Mitigation of Chromium Impurity Effects and Degradation in Solid Oxide Fuel Cells

Ruofan Wang, Zhihao Sun, Yiwen Gong, Uday Pal, Soumendra Basu and Srikanth Gopalan

Division of Materials Science and Engineering
Boston University
Outline

• Introduction
• Cell Fabrication
• Summary of Test Conditions
• Electrochemical Degradation
• Microstructural Evolution
• Degradation Mechanisms
• Development of Oxide Protective Coatings
• Summary
Introduction

• **Background**

 – Chromium (Cr) poisoning of cathode in solid oxide fuel cells (SOFCs) is considered to be one of the major reasons for performance degradation

 – For different cathode materials, the mechanisms of Cr-poisoning are complex.

• **Project Goals**

 – Compare the degradation phenomena in LSM, LSF, and LNO (La$_2$NiO$_4$) - based cathodes caused by Cr-poisoning

 – Through the comparative study, investigate the mechanisms of Cr-poisoning in these three types of cathodes in realistic full cell operating conditions

 – Design mitigating strategies based on applying protective coatings to ferritic stainless steel interconnects
Cell Fabrication

LSM: \((\text{La}_{0.8}\text{Sr}_{0.2})_{0.95}\text{MnO}_{3-x}\)
LSF: \((\text{La}_{0.8}\text{Sr}_{0.2})_{0.95}\text{FeO}_{3-x}\)
GDC: \((\text{Gd}_{0.10}\text{Ce}_{0.90})\text{O}_{2-x}\)
Summary of Test Conditions

- **General test conditions:**
 - Fuel: 98% H₂ + 2% H₂O (300 cc/min): Fixed
 - Oxidant: Air (1000 cc/min)
 - Interconnect: Crofer 22 H mesh (used as cathodic current collector in cell tests)

- **Conditions varied in the study:**

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Cathode Atmosphere</th>
<th>Current Condition</th>
<th>Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dry Air</td>
<td>Open Circuit</td>
<td>LSM-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LSF-1</td>
</tr>
<tr>
<td>2</td>
<td>Humidified Air (10% H₂O)</td>
<td>Open Circuit</td>
<td>LSM-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LSF-2</td>
</tr>
<tr>
<td>3</td>
<td>Dry Air</td>
<td>Galvanostatic (0.5 A/cm²)</td>
<td>LSM-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LSF-3</td>
</tr>
<tr>
<td>4</td>
<td>Humidified Air (10% H₂O)</td>
<td>Galvanostatic (0.5 A/cm²)</td>
<td>LSM-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LSF-4</td>
</tr>
</tbody>
</table>
Electrochemical Degradation: V-i

<table>
<thead>
<tr>
<th>Condition 1: Dried Air + OCV</th>
<th>Condition 2: 10% Humidified Air + OCV</th>
<th>Condition 3: Dried Air + 0.5 A/cm²</th>
<th>Condition 4: 10% Humidified Air + 0.5 A/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSM-Based cells</td>
<td>LSM-Based cells</td>
<td>LSM-Based cells</td>
<td>LSM-Based cells</td>
</tr>
<tr>
<td>LSM-1</td>
<td>LSM-2</td>
<td>LSM-3</td>
<td>LSM-4</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>Voltage (V)</td>
<td>Voltage (V)</td>
<td>Voltage (V)</td>
</tr>
<tr>
<td>Power Density (W/m²)</td>
<td>Power Density (W/m²)</td>
<td>Power Density (W/m²)</td>
<td>Power Density (W/m²)</td>
</tr>
</tbody>
</table>

LSM-Based cells:
- LSM-1
- LSM-2
- LSM-3
- LSM-4

LSF-Based cells:
- LSF-1
- LSF-2
- LSF-3
- LSF-4
Electrochemical Degradation: V-i

- **Cr-poisoning** is more deleterious in LSM-based cell than that in LSF-based cell.
 - In the case of **LSM-based** cell:
 - Current load (0.5 A/cm²) accelerates the degradation
 - Presence of humidity in air promotes degradation under current load
 - In the case of **LSF-based** cell:
 - Current load (0.5 A/cm²) slightly improved the cell performance (presumably due to cell break-in)
 - In humidified air, performance deteriorated under OCV condition but improved under current load
Electrochemical Degradation: EIS

<table>
<thead>
<tr>
<th>Conditions</th>
<th>LSM-Based</th>
<th>LSF-Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition 1: Dried Air + OCV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition 2: Humidified Air + OCV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition 3: Dried Air + 0.5 A/cm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition 4: Humidified Air + 0.5 A/cm²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EIS consistent with the V-i results. In 10% humidified air, it shows increasing polarization of LSM-based cell and decreasing polarization of LSF-based cell.
Microstructural Evolution: LSM-Based

LSM-1: Dry Air + OCV

LSM-2: Humidified Air + OCV

LSM-3: Dry Air + Current

LSM-4: Humidified Air + Current

Cr-containing deposits are Cr,Mn-rich, suggesting (Cr,Mn)$_3$O$_4$ spinel phases.
Microstructural Evolution: LSM-Based

- Cr intensity at cathode/electrolyte interface: LSM-4 > LSM-3 > LSM-2 ≈ LSM-1
- Cr deposition was promoted by current and extended to TPB’s away from the cathode/electrolyte interface.

Microstructural Evolution: LSF-Based

OCV condition:
Cr distribution is homogeneous in the bulk of cathode

Most of Cr is distributed at the surface of cathode

Cr is distributed at the surface of cathode and also cathode/electrolyte interface
Microstructural Evolution: LSF-Based

LSF-1: Dried Air + OCV

Cr Line Scan
Sr Line Scan

LSF-2: 10% Humidified Air + OCV

Cr Line Scan
Sr Line Scan

LSF-3: Dried Air + 0.5 A/cm²

Cr Line Scan
Sr Line Scan

LSF-4: 10% Humidified Air + 0.5 A/cm²

Cr Line Scan
Sr Line Scan

Cr and Sr profiles do not match at the cathode/electrolyte interface
Microstructural Evolution: LSF-Based

LSF-1: Dried Air + OCV
- LSF Paste
- LSF
- LSF-GDC
- GDC

LSF-2: 10% Humidified Air + OCV
- LSF Paste
- LSF
- LSF-GDC
- GDC

LSF-3: Dried Air + 0.5 A/cm²
- LSF Paste
- LSF
- LSF-GDC
- GDC

LSF-4: 10% Humidified Air + 0.5 A/cm²
- LSF Paste
- LSF
- LSF-GDC
- GDC

LSF contact paste

LSF current collective layer

Dense Sr-Cr-O phase

Sr:Cr ≈ 1:2 (At%)

LSF contact paste

LSF current collective layer

Dense Sr-Cr-O phase

Sr:Cr ≈ 1:1 (At%)
Microstructural Evolution: LSF-Based

- LSF-1: Dried Air + OCV
- LSF-2: 10% Humidified Air + OCV
- LSF-3: Dried Air + 0.5 A/cm²
- LSF-4: 10% Humidified Air + 0.5 A/cm²

Major amount Cr₂O₃
Minor amount Sr,Cr-containing deposits

Major amount Cr₂O₃
Minor amount Sr,Cr-containing deposits
Degradation in LNO Cathodes
Degradation Mechanisms

- Effect of humidity on Cr evaporation:

 Equilibrium Partial Pressure of Cr in Dry Air

 Equilibrium Partial Pressure of Cr in 10% Humidified Air

 Equilibrium Partial Pressure of Cr vapor species over Cr₂O₃ scale

- Cr vapor pressure in 10% humidified air is ~2-order-of-magnitude higher than that in dry air*.

Degradation Mechanisms

- **Effect of humidity on Cr distributions:**

\[2\text{SrCr}_2\text{O}_4(s) + 2\text{H}_2\text{O}(g) + 3\text{O}_2(g) = 2\text{SrCr}_2\text{O}_4(s) + 2\text{CrO}_2\text{(OH)}_2(g) \]
\[\text{(1)} \]

\[\text{SrCr}_2\text{O}_4(s) + 4\text{H}_2\text{O}(g) + 2\text{O}_2(g) = \text{Sr(OH)}_4(s) + 2\text{CrO}_2\text{(OH)}_2(g) \]
\[\text{(2)} \]

Evaporation of Cr-deposits on the LSF surface:
Oxide Protective Coatings
XRD: a) CuMn$_{1.8}$O$_4$ powders
b) after reduction anneal
c) after 1h oxidation anneal

EPD Coating of CuMn$_{1.8}$O$_4$

Cr Diffusion and Microstructure Evolution

- **750 °C 100 h**
 - Cr at%: ~<1 μm

- **750 °C 950 h**
 - Cr at%: ~2.1 μm

- **850 °C 100 h**
 - Crofer 22 APU: ~7.1 μm

- **850 °C 100h + 800 °C 400h**
 - Crofer 22 APU: ~13.5 μm

Taxon:

- Particle
- Needle structures
TEM Analysis of Protective Coatings

Needle structures: Mn$_3$O$_4$ particles in dense layer: Cr$_2$O$_3$
Solubility of \(\text{Cr}_2\text{O}_3 \) in \(\text{CuMn}_{1.8}\text{O}_4 \)

Reaction between \(\text{Cr}_2\text{O}_3 \) and \(\text{CuMn}_{1.8}\text{O}_4 \) powders (800 °C, 10 h, in air)
Electrical Conductivity of \((\text{Cu,Mn,Cr})_3\text{O}_4\)

![Graph showing electrical conductivity vs temperature for different compositions of \((\text{Cu,Mn,Cr})_3\text{O}_4\).](image)

- \((\text{Cu,1.8Mn})_{1.3}\text{Cr}1.7\text{O}_4\)
- \((\text{Cu,1.8Mn})_{1.8}\text{Cr}1.2\text{O}_4\)
- \((\text{Cu,1.8Mn})_{2.4}\text{Cr}0.6\text{O}_4\)

Coating on complex geometry (mesh) and Electrochemical tests – LSM cells

- Commercial CuMn2O4
- Uncoated interconnect
- Bare
- BU Coating

Graph showing potential over time (days) for BU Coating, Commercial coating, and Bare conditions.
Summary

- LSM, LSF-GDC, and LNO-based cathodes have been tested against chromium poisoning under load, and in the presence of 10% humidity
 - LSF-GDC and LNO cathodes show excellent tolerance towards chromium poisoning compared to LSM
 - The differences in the mechanisms of degradation are still being worked out

- High quality CuMn spinels have been applied using EPD to complex geometries of ferritic stainless steel interconnects.
 - The coatings are very effective in providing a barrier to Cr attack on LSM cathodes
 - The combination of LSF-GDC or LNO with CuMn protective coatings should provide excellent long term stability against Cr poisoning
Publications

- Effect of Humidity and Cathodic Current on Chromium Poisoning of Sr-Doped LaMnO3-Based Cathode in Anode-Supported Solid Oxide Fuel Cells, R Wang, M Würth, B Mo, UB Pal, S Gopalan, SN Basu, ECS Transactions 75 (42), 61-67
- Chromium Poisoning of Cathodes in Solid Oxide Fuel Cells and its Mitigation Employing CuMn1.8O4 Spinel Coatings on InterconnectsR Wang, Z Sun, Y Lu, UB Pal, SN Basu, S Gopalan, ECS Transactions 78 (1), 1665-1674
- Mitigation of chromium poisoning of cathodes in solid oxide fuel cells employing CuMn1.8O4 spinel coating on metallic interconnect, R Wang, Z Sun, UB Pal, S Gopalan, SN Basu, Journal of Power Sources 376, 100-110
- CuMn1.8O4 protective coatings on metallic interconnects for prevention of Cr-poisoning in solid oxide fuel cells, Z Sun, R Wang, AY Nikiforov, S Gopalan, UB Pal, SN Basu, Journal of Power Sources 378, 125-133
Acknowledgement

- The financial support from U.S. Department of Energy, Office of Fossil Energy, through Award # DE-FE0023325 is gratefully acknowledged.
- Steve Markovich and Shailesh Vora

Thank you! Questions?