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Project Overview

• Team member: Siemens Corp. and Argonne National Lab

• Research focus: gas turbine materials

• For higher-temperature engine operations to improve efficiency and 
reduce emissions

• For the use of unconventional fuels with more corrosion species

• Project tasks:

• Task 1: develop predictive models for deposition, corrosion and 
component life assessment 

• Task 2: develop/demonstrate nondestructive evaluation (NDE) 
technologies for coatings

• Project duration FY2015-FY2017
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NDE Objective

▪ Develop and demonstrate advanced thermal-imaging
NDE technologies for coatings (mostly TBCs)
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TBC Background – Material and Structure

Uncoated and TBC-coated turbine blades

▪ Thermal barrier coatings (TBCs) are commonly used to insulate 

high-temperature metallic components in gas turbines

– TBCs may reduce metal surface temperature by >100ºC

▪ TBCs are “prime reliant” material   nondestructive evaluation 

(NDE) is needed for their condition monitoring and life prediction

– Need 100% coating surface inspection by imaging NDE

▪ TBC material: 
YSZ

▪ TBC processing: 
APS or EB-PVD
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TBC Background – NDE Development

▪ Many NDE technologies were evaluated for TBCs in last few 

decades  generally not very successful

– No NDE tools for industrial applications

▪ Current TBC analysis and quality control still relies on destructive 

method – microscopy:

▪ This research has established Pulsed Thermal Imaging – Multilayer 

Analysis (PTI-MLA) as a promising NDE method for entire TBC 

lifetime evaluation
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Presentation Outline

▪ PTI-MLA method and capabilities

▪ PTI-MLA for TBC life prediction

▪ PTI-MLA  for industrial applications

– 3D mapping of MLA data for engine components

– Evaluation of low-cost IR camera
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Pulsed Thermal Imaging – Multilayer Analysis 
(PTI-MLA)

PTI experimental setup

Flash lamp 

IR camera

Monitor

Turbine blade

Thermal conductivity image

0.5 W/m-K 1.4 W/m-K

▪ PTI-MLA consists of a pulsed thermal imaging (PTI) experimental 

system and a multilayer analysis (MLA) data-processing code

▪ PTI-MLA images two coating properties over entire coating surface
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PTI-MLA: Principle for Coating Analysis

Substrate:

L2, e2, a2

Coating:
L1, e1, a1

T(t)

L1 L2

IR camera

Flash 
lamp

L – thickness

e – thermal effusivity

a – thermal diffusivity

PTI system setup

Temperature profile T(t) at each pixel

Log temperature profile lnT(t)

Log slope profile d(lnT)/d(lnt)
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▪ MLA method: solve governing equation for layered materials and then fit the 
solution with experimental data (for all pixels)

▪ MLA determines 3 parameters: e1/e2, L1
2/a1, and L2

2/a2 (e2 & a2 are known)

– For coating: (1) k & ρc when L is known; (2) k & L when TBC porosity is known

– For substrate: L (substrate’s k & ρc are already known)

– Accuracy: <3% error typical

MLA Model Solutions

PTI-MLA: Measurement Principle 
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L – thickness

k – thermal conductivity

ρc – heat capacity

e = (kρc)1/2 – thermal effusivity

α = k/ρc – thermal diffusivity

Coating/Substrate Model
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PTI-MLA Results for typical 1-layer TBCs
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1 EB-PVD 0.050 0.87 2.90

2 EB-PVD 0.138 1.63 2.22

3 APS 0.86 0.93 2.19
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PTI-MLA Predictions for 2-layer TBCs

e: 1st layer (LZO)

e: 2nd layer (YSZ)
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Summary of PTI-MLA Capabilities

▪ PTI-MLA measures 2 coating properties:

– k & ρc when L is known

– k & L when TBC porosity (or density) is known (c is constant for TBC)

▪ PTI-MLA has unique capabilities:

– Sample can be any size and geometry

– Imaging property distribution over entire surface with desired resolution

– Current code works for 1- & 2-layer coatings (more layers possible)

– Also determines substrate thickness L

– High accuracy: <3% error typical

– Fast test (few seconds), fully automated data processing (~minute)

– Can be miniaturized for inside engine inspection
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Presentation Outline

▪ PTI-MLA method and capabilities

▪ PTI-MLA for TBC life prediction

▪ PTI-MLA  for industrial applications

– 3D mapping of MLA data for engine components

– Evaluation of low-cost IR camera
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384hr216hr120hr

0.6W/m-K 1.2W/m-K

TBC Property Change with Life

Thermal conductivity images for a thermal-cycled TBC (@1100°C)

▪ Cracks initiate and increase in size with time (conductivity decrease)

▪ Intrinsic TBC conductivity increases with time

Crack initiation/development



• Measured overall TBC thermal conductivity k is affected by two factors:

– (1) Intrinsic TBC material conductivity kTBC increases with time due to sintering 

(kTBC is usually modeled by Larson-Miller parameter, or LMP)

– (2) Interface cracking/delamination is filled by air with low conductivity kair

Ceramic coating

Metallic substrate

Measured TBC conductivity k

TBC intrinsic conductivity kTBC

Crack gap thickness Lair filled 

with low-conductivity air kair

TBC Life Prediction Model
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• Air-gap thickness Lair can be estimated from:

where LTBC, k and kair are known; kTBC can be obtained from LMP correlation

• TBC delaminates (or fails) when Lair is large (value?)

air

air

TBC

TBCairTBC

k

L

k

L

k

LL
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Thermal Cycled APS TBC Samples

• Note: only ~10% conductivity increase in lifetime

TBC already spalledSurface contamination

38% 67%26% 80% 100%3% 6% 13% 51%
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Intrinsic TBC Conductivity kTBC with LMP
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Air-Gap Thickness Lair for Delamination
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• Data suggest that TBC delaminates at Lair ~ 2µm

• This is a complete TBC life prediction model: k  Lair
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38% life
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Presentation Outline

▪ PTI-MLA method and capabilities

▪ PTI-MLA for TBC life prediction

▪ PTI-MLA  for industrial applications

– 3D mapping of MLA data for engine components

– Evaluation of low-cost IR camera
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NDE for TBCs on Engine Components

▪ PIT-MLA can easily obtain NDE data for entire engine part

▪ However, entire NDE data may be difficult to present if part is complex 

▪ Example for a simpler part: engine blade
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TBC Thickness Image for Entire Blade 

(total 12 sub-images)

0 0.6 mm
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Why 3D Mapping of NDE Image Data?

▪ Current NDE image data are simply compiled 

▪ Such NDE results can be difficult to use:

– Difficult to understand NDE images if part is complex

– Difficult to perform dimensional analysis

– Difficult to use NDE data for TBC life prediction

▪ Solution: 3D NDE data representation
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Mapping NDE Data onto 3D Object

▪ Input data:

– Surface cloud points of 3D part

– 2D NDE images (for entire 3D part surface)

▪ Step 1: Calculating normal vectors of cloud points (if not available)

▪ Step 2: Mapping/stitching NDE images onto surface cloud points

– Matching each NDE test image with corresponding projection image of 

3D part and transferring NDE data to surface points

– Automated weighting to eliminate data with poor or no flash heating

▪ Step 3: 3D NDE data can be displayed in any views (or videos)
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Matching NDE Image with Projection 

Image of 3D Part 

NDE image

Projection image

of cloud points Matched image

NDE data on image 

pixels are transferred 

to surface points
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Weighted Data in Overlapped Areas

Surface area observed 

by IR camera but not 

illuminated by flash 

Lamp (weight = 0)

Weight is related to 

flash intensity at each 

surface point
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Final Result: TBC Thickness on Entire Blade

All 12 NDE sub-images 

are seamlessly mapped 

onto blade surface
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TBC thickness for 3D blade
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Presentation Outline

▪ PTI-MLA method and capabilities

▪ PTI-MLA for TBC life prediction

▪ PTI-MLA  for industrial applications

– 3D mapping of MLA data for engine components

– Evaluation of low-cost IR camera
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▪ Two factors affect PTI-MLA NDE for industrial applications:

– TBC translucency requires surface treatment (usually graphite paint)

– High-cost and large size of high-end IR cameras

▪ Solution: use low-cost LWIR camera (bolometer)

– TBC is naturally opaque at LWIR (7-13µm) (no paint required)

– Bolometers are small and much cheaper (~10% of cooled IR camera)

State-of-the-art IR camera: SC4000

(Cooled, MWIR, 320x256, high speed) (Bolometer)

Low-cost IR camera: A35

(RT, LWIR, 320x256, 60Hz)

PTI-MLA for Industrial Applications
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Evaluation of a FLIR A35 IR camera

30

▪ Various TBC samples were tested using SC4000 and A35

▪ A35 results were compared with SC4000 results (as “exact”)

– Compared parameters: TBC thickness and thermal conductivity
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Measured conductivity images for 0.36mm TBC

0 2 W/m-K

A35, unpainted TBC A35, painted TBC SC4000, painted TBC

▪ Comparison for TBC thickness are better (+16% and -2%)

▪ Note: same code was used for all data processing

Assumed: exactError: - 4%Error: +37%



32

TBC measurement error by A35 camera
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PTI-MLA Development for Bolometers

▪ Modeling flash-heat absorption inside translucent TBCs 

▪ Modeling bolometer response time



34 34

z

0

L

1

3

4

2

qi1

r0

r1

qi2

qi3

qo4

qo2

qo3

qo1

qi4=0

Coating

Optical Model for TBC Heat Absorption

Flash heating as a function of coating depth q(z):

Flash heating

α = optical attenuation coefficient 

ρ0 & ρ1 = surface reflectivity 

L = coating thickness

 
L

zLz

i
e

ee
qzq

a

aa

rr

r
r

2

10

)2(

1
01

1
1)(










Metallic substrate

7YSZ

From 

flash lamp

(<2.5µm)
To IR 

camera

To LWIR 

camera

(7-13µm)

To MWIR 

camera

(3-5µm)

Painted TBC Unpainted TBC



35

Modeling Bolometer Response Time

35

P(t) = incident power, 

G = thermal conductance of thermal link

H = pixel heat capacity

∆T = relative pixel temperature (bolometer reading)

T(t)

t (s)

IR camera reading to abrupt 

incident radiation change

Bolometer

Cooled IR camera

Response time = H/G

▪ In bolometer, pixel temperature change 

from absorbed incident thermal energy 

is used to sense radiation intensity

▪ This process is modeled by:

▪ When P(t) changes abruptly from 0 to a constant P at t=0, ∆T follows:

▪ Response time for A35 is 12ms ( reason for poor NDE results for thin TBCs)

H/G = bolometer response time

dt
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0 0.6 mm

Typical Measured TBC Thickness on Blade

A35, unpainted TBC

(α = 3.9 mm-1)
A35, painted TBC SC4000, painted TBC

▪ Error for measured TBC conductivity is similar (+7.7% and +7.4%)

– Note: errors of <10% are generally considered acceptable

– Note: same bolometer code was used for all data processing

▪ Errors in A35 results are mostly due to noise  higher flash heating 

will reduce them! (especially for unpainted and thicker TBCs)

Assumed: exactError: - 6.5%Error: - 7.2%

10 cm
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Summary

▪ PTI-MLA can accurately measure TBC properties

▪ PTI-MLA can nondestructively evaluate TBCs in their entire lifetime
– For TBC life prediction

– For industrial applications

▪ PTI-MLA has essentially solved the TBC NDE issue!
– PTI-MLA is a turn-key technology and can be licensed from Argonne


