

SIEMENS

GAS TURBINE MATERIALS LIFE ASSESSMENT AND NONDESTRUCTIVE EVALUATION

J.G. Sun¹ and A. Kulkarni² ¹Argonne National Laboratory, Argonne, IL, USA ²Siemens Corporation, Charlotte, NC, USA

2017 University Turbine Systems Research Project Review Meeting Pittsburgh, PA November 1-2, 2017

> Work supported by U.S. Department of Energy, Office of Fossil Energy, Crosscutting Research Program

Project Overview

- Team member: Siemens Corp. and Argonne National Lab
- Research focus: gas turbine materials
 - For higher-temperature engine operations to improve efficiency and reduce emissions
 - For the use of unconventional fuels with more corrosion species
- Project tasks:
 - Task 1: develop predictive models for deposition, corrosion and component life assessment
 - Task 2: develop/demonstrate nondestructive evaluation (NDE) technologies for coatings
- Project duration FY2015-FY2017

NDE Objective

 Develop and demonstrate advanced thermal-imaging NDE technologies for coatings (mostly TBCs)

TBC Background – Material and Structure

- Thermal barrier coatings (TBCs) are commonly used to insulate high-temperature metallic components in gas turbines
 TBCs may reduce metal surface temperature by >100°C
- TBCs are "prime reliant" material → nondestructive evaluation (NDE) is needed for their condition monitoring and life prediction
 Need 100% coating surface inspection by imaging NDE

Uncoated and TBC-coated turbine blades

- TBC material: YSZ
- TBC processing: APS or EB-PVD

TBC Background – NDE Development

- Many NDE technologies were evaluated for TBCs in last few decades → generally not very successful
 - No NDE tools for industrial applications
- Current TBC analysis and quality control still relies on destructive method – microscopy:

 This research has established Pulsed Thermal Imaging – Multilayer Analysis (PTI-MLA) as a promising NDE method for entire TBC lifetime evaluation

Presentation Outline

- PTI-MLA method and capabilities
- PTI-MLA for TBC life prediction
- PTI-MLA for industrial applications
 - 3D mapping of MLA data for engine components
 - Evaluation of low-cost IR camera

Pulsed Thermal Imaging – Multilayer Analysis (PTI-MLA)

- PTI-MLA consists of a pulsed thermal imaging (PTI) experimental system and a multilayer analysis (MLA) data-processing code
- PTI-MLA images two coating properties over entire coating surface

PTI experimental setup

Thermal conductivity image

PTI-MLA: Principle for Coating Analysis

PTI system setup T(t) IR camera Flash lamp Coating: Substrate: L_1, e_1, α_1 L – thickness L_2, e_2, α_2 e - thermal effusivity α – thermal diffusivity

Temperature profile *T*(*t*) at each pixel

MLA analysis

Log slope profile d(lnT)/d(lnt)

PTI-MLA: Measurement Principle

- MLA method: solve governing equation for layered materials and then fit the solution with experimental data (for all pixels)
- MLA determines 3 parameters: e_1/e_2 , L_1^2/α_1 , and L_2^2/α_2 ($e_2 \& \alpha_2$ are known)
 - For coating: (1) k & ρc when L is known; (2) k & L when TBC porosity is known
 - For substrate: L (substrate's k & ρc are already known)
 - Accuracy: <3% error typical

PTI-MLA Results for typical 1-layer TBCs

Thermal conductivity *k* images

4 J/cm³-K

TBC#	Туре	<i>L</i> (mm)	<i>k</i> (W/m-K)	ρc(J/cm ³ -K)
1	EB-PVD	0.050	0.87	2.90
2	EB-PVD	0.138	1.63	2.22
3	APS	0.86	0.93	2.19

Typical pixel fitting curves

PTI-MLA Predictions for 2-layer TBCs

Predicted thickness profiles for a used turbine vane

Grayscale is proportional to thermal effusivity

Summary of PTI-MLA Capabilities

- PTI-MLA measures 2 coating properties:
 - k & ρc when L is known
 - k & L when TBC porosity (or density) is known (c is constant for TBC)
- PTI-MLA has unique capabilities:
 - Sample can be any size and geometry
 - Imaging property distribution over entire surface with desired resolution
 - Current code works for 1- & 2-layer coatings (more layers possible)
 - Also determines substrate thickness L
 - High accuracy: <3% error typical
 - Fast test (few seconds), fully automated data processing (~minute)
 - Can be miniaturized for inside engine inspection

Presentation Outline

- PTI-MLA method and capabilities
- PTI-MLA for TBC life prediction
- PTI-MLA for industrial applications
 - 3D mapping of MLA data for engine components
 - Evaluation of low-cost IR camera

TBC Property Change with Life

Thermal conductivity images for a thermal-cycled TBC (@1100°C)

Crack initiation/development

- Cracks initiate and increase in size with time (conductivity decrease)
- Intrinsic TBC conductivity increases with time

TBC Life Prediction Model

- Measured overall TBC thermal conductivity k is affected by two factors:
 - (1) Intrinsic TBC material conductivity \mathbf{k}_{TBC} increases with time due to sintering (\mathbf{k}_{TBC} is usually modeled by Larson-Miller parameter, or LMP)
 - (2) Interface cracking/delamination is filled by air with low conductivity k_{air}

• Air-gap thickness L_{air} can be estimated from: $\frac{L_{TBC} + L_{air}}{k} = \frac{L_{TBC}}{k_{TBC}} + \frac{L_{air}}{k_{air}}$

where L_{TBC} , k and k_{air} are known; k_{TBC} can be obtained from LMP correlation

• TBC delaminates (or fails) when L_{air} is large (value?)

Thermal Cycled APS TBC Samples

Measured Average TBC Properties (nominal TBC thickness 0.3mm)

Note: only ~10% conductivity increase in lifetime

Intrinsic TBC Conductivity *k*_{TBC} with LMP

Air-Gap Thickness Lair for Delamination

- Data suggest that TBC delaminates at $L_{air} \sim 2 \mu m$
- This is a complete TBC life prediction model: $k \rightarrow L_{air}$

Presentation Outline

- PTI-MLA method and capabilities
- PTI-MLA for TBC life prediction
- PTI-MLA for industrial applications
 - 3D mapping of MLA data for engine components
 - Evaluation of low-cost IR camera

NDE for TBCs on Engine Components

- PIT-MLA can easily obtain NDE data for entire engine part
- However, entire NDE data may be difficult to present if part is complex
- Example for a simpler part: engine blade

TBC Thickness Image for Entire Blade (total 12 sub-images)

 $\mathbf{0}$

0.6 mm

Why 3D Mapping of NDE Image Data?

- Current NDE image data are simply compiled
- Such NDE results can be difficult to use:
 - Difficult to understand NDE images if part is complex
 - Difficult to perform dimensional analysis
 - Difficult to use NDE data for TBC life prediction
- Solution: 3D NDE data representation

Mapping NDE Data onto 3D Object

- Input data:
 - Surface cloud points of 3D part
 - 2D NDE images (for entire 3D part surface)
- Step 1: Calculating normal vectors of cloud points (if not available)
- Step 2: Mapping/stitching NDE images onto surface cloud points
 - Matching each NDE test image with corresponding projection image of 3D part and transferring NDE data to surface points
 - Automated weighting to eliminate data with poor or no flash heating
- Step 3: 3D NDE data can be displayed in any views (or videos)

Matching NDE Image with Projection Image of 3D Part

Projection image of cloud points

e •

Matched image

NDE data on image pixels are transferred to surface points

NDE image

Weighted Data in Overlapped Areas

Weight is related to flash intensity at each surface point

Final Result: TBC Thickness on Entire Blade

All 12 NDE sub-images are seamlessly mapped onto blade surface

TBC thickness for 3D blade

Presentation Outline

- PTI-MLA method and capabilities
- PTI-MLA for TBC life prediction
- PTI-MLA for industrial applications
 - 3D mapping of MLA data for engine components
 - Evaluation of low-cost IR camera

PTI-MLA for Industrial Applications

- Two factors affect PTI-MLA NDE for industrial applications:
 - TBC translucency requires surface treatment (usually graphite paint)
 - High-cost and large size of high-end IR cameras
- Solution: use low-cost LWIR camera (bolometer)
 - TBC is naturally opaque at LWIR (7-13µm) (no paint required)
 - Bolometers are small and much cheaper (~10% of cooled IR camera)

State-of-the-art IR camera: SC4000 (Cooled, MWIR, 320x256, high speed)

(Bolometer) Low-cost IR camera: A35 (RT, LWIR, 320x256, 60Hz)

Evaluation of a FLIR A35 IR camera

- Various TBC samples were tested using SC4000 and A35
- A35 results were compared with SC4000 results (as "exact")
 Compared parameters: TBC thickness and thermal conductivity

Measured conductivity images for 0.36mm TBC

- Comparison for TBC thickness are better (+16% and -2%)
- Note: same code was used for all data processing

TBC measurement error by A35 camera

PTI-MLA Development for Bolometers

- Modeling flash-heat absorption inside translucent TBCs
- Modeling bolometer response time

Optical Model for TBC Heat Absorption

Flash heating as a function of coating depth q(z):

$$q(z) = q_{i1} (1 - \rho_0) \frac{e^{-\alpha z} - \rho_1 e^{-\alpha (2L - z)}}{1 - \rho_0 \rho_1 e^{-2\alpha L}}$$

 α = optical attenuation coefficient $\rho_0 \& \rho_1$ = surface reflectivity L = coating thickness

Modeling Bolometer Response Time

- In bolometer, pixel temperature change from absorbed incident thermal energy is used to sense radiation intensity
- This process is modeled by:

$$P(t) = G\Delta T + H \frac{d\Delta T}{dt}$$

P(t) = incident power, G = thermal conductance of thermal link H = pixel heat capacity

 ΔT = relative pixel temperature (bolometer reading)

IR camera reading to abrupt incident radiation change

• When P(t) changes abruptly from 0 to a constant P at t=0, ΔT follows:

$$\Delta T = \frac{P}{G} \left(1 - e^{-\frac{G}{H}t} \right) \qquad \qquad \text{H/G = bolometer response time}$$

Response time for A35 is 12ms (← reason for poor NDE results for thin TBCs)

TBC measurement error by A35 camera - with heat absorption and response time models

Typical Measured TBC Thickness on Blade

- Error for measured TBC conductivity is similar (+7.7% and +7.4%)
 - Note: errors of <10% are generally considered acceptable
 - Note: same bolometer code was used for all data processing
- Errors in A35 results are mostly due to noise → higher flash heating will reduce them! (especially for unpainted and thicker TBCs)

Summary

- PTI-MLA can accurately measure TBC properties
- PTI-MLA can nondestructively evaluate TBCs in their entire lifetime
 - For TBC life prediction
 - For industrial applications
- PTI-MLA has essentially solved the TBC NDE issue!
 - PTI-MLA is a turn-key technology and can be licensed from Argonne

