High Temp. CMC Nozzles for 65% Efficiency
DE-FE0024006

Progress Review– Phase II
November 1, 2017
This material is based upon work supported by the Department of Energy under Award Number DE-FE0024006.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

October 30, 2017

Not to be copied, reproduced, or distributed without prior approval.

GE INFORMATION - The information contained in this document shall not be reproduced without the express written consent of GE. If consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction. This presentation and the information herein are provided for information purposes only and are subject to change without notice. NO REPRESENTATION OR WARRANTY IS MADE OR IMPLIED AS TO ITS COMPLETENESS, ACCURACY, OR FITNESS FOR ANY PARTICULAR PURPOSE. All relative statements are with respect to GE technology unless otherwise noted.
GE Solution

Cooled high-temperature CMC nozzles

- Support load following capabilities of modern grid
- Allow higher turbine inlet temperatures (~3,100°F)
- Applicable to IGCC with pre-combustion carbon capture
- Means of improvement – improved cooling designs, improved aerodynamics, better sealing, reduced leakage
- Leverage advanced manufacturing processes
Agenda

• Schedule Update
• Nozzle Design
• Nozzle Fabrication
• Clemson Work
• Test Rig Design
• Feature Test Design
• High Temperature Seals
• Next Steps
Phase II Schedule

PHASE II - DEVELOPMENT & TESTING

- **Task 2.1.0 - Project Management & Planning**
- **Task 2.2.0 - Complete design definition of CMC nozzle**
 - Milestone 2.2.1.1 CMC preform definition
 - Milestone 2.2.3.1 model definition for fab
- **Task 2.3.0 - Design high-temperature nozzle test rig**
 - Milestone 2.3.2.1 model release for fab
- **Task 2.4.0 - Fabrication of nozzles, end-walls, seals**
 - Milestone 2.4.1.1 Define needed design changes for manufacturability
 - Milestone 2.4.4.1 Finished prototype CMC Nozzles
- **Task 2.5.0 - Fabricate nozzle test rig**
 - Milestone 2.5.2.1 Installation complete
- **Task 2.6.0 - Test nozzles and seals to demonstrate fit, form, function and flow savings potential**
 - Milestone 2.6.1.1 Demonstrated sealing
- **Task 2.7.0 - High temp EBC/CMC durability test**
 - Milestone 2.7.1.1 Demonstrated Durability
- **Task 2.8.0 - Feature test for strength and durability**
 - Milestone 2.8.1.1 Identify results that drive design change
 - Milestone 2.8.3.1 Demonstrate margin to design loads
- **Task 2.9.0 - Full-scaled full-featured demo field test**
- **Task 2.10.0 - Conclusions and Documentation**

Phase II Go/No-Go (1 per Project Year)

- PDR
- MRL 4
- TRL5
Technical Approach
Task Details
Nozzle Design Overview

Patented Pending Geometry
Cooling Circuits

Cooling Air Supply

LE Impingement

Patented Pending Geometry

Design #1

Design #2

LE

© 2017 General Electric Company. All rights reserved.
TE cooling – Two workable approaches

Design #1

Pressure side view

Suction side view

Design #2

Temperature Contours
Initial Fabrication Learning

SN001
- Layup architecture #1
- Tooling concept proved feasible
- Need to improve thermal cycles to reduce dimensional deformation
- Resulted in well infiltrated component... excellent weight gain

SN002
- Layup architecture #2... darting to remove excessive build up
- Altered thermal cycle to reduce dimensional deformation

SN003
- Layup architecture #3... alternate airfoil to end-wall build
- Tool change resulted in improved compaction in TE
- Altered thermal cycle further decreased dimensional stability
Pre-Preg Slurry

Slurry Trial Goals
- Increase infiltrability of large components
- Increase mechanical properties
- Process robustness vs strength loss/gain

Slurry Trial Results
- Repeatable high quality infiltration
- No debit in ILT strength

Remaining 2017 Trials

Construction
- Utilize alternate slurry formulation
- Add component features

TE Cooling build trials

Machining Development
- CAM and fixture design
- Seal slot machining improvements
Nozzle Feature Tests

Nozzle Airfoil-to-TE strength

- Test Goal - simulate engine stress state... determine section capability
- Measure local strains and detect laminate damage at overload conditions

Nozzle TE-to-Sidewall strength
Design Bonded Joint – Clemson

Room temperature shear testing

- Tested in-house and commercially available bonding agents
- Proprietary formulation using Si-based polymer derived ceramics with ceramic particles
- Bonded surface investigation shows some voids in the bond joint

Application

- Bond load pads to simplify airfoil layup
- Bond laminates for seal build-up areas

Current bond strength less than desired
Seal Surface Improvement - Clemson

Background

• A smoother sealing surface leaks less
• Current manufacturing method may not produce required surface finish.
• Surface finish may deteriorate during operation.

Goals

• Create a durable smooth sealing surface
• Easy application with no CMC material property degradation

Proposed Solution

Coat sealing surface with vitreous material
High-Temp Nozzle Test Rig Design

Rig Attributes

• HA class gas path temperature, with relevant pressure and mass flow
• Nozzle purge flow to similar to GT
• Build in 2018... test in 2019
• Objective: Test up to 3 sealing and 2 cooling configurations of full size CMC nozzle
Finalized Serpentine Duct

• Pressure loading within +/-2% of relevant engine conditions
• Simulated pressures will provide engine relevant cooling and leakage flows

Mach Contours at 50% Span

© 2017 General Electric Company. All rights reserved.
Instrumentation Summary

<table>
<thead>
<tr>
<th></th>
<th>PV</th>
<th>Serp</th>
<th>Rake</th>
<th>Vane box</th>
<th>Nozzles</th>
<th>aft duct</th>
<th>other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Pressure</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Total Temperature</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Strain</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Static Pressure</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>29</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>Differential Pressure</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water Temperature</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Static Temperature</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>19</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>Metal Temperature</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>31</td>
<td>10</td>
<td>54</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>157</td>
</tr>
</tbody>
</table>

- **31 pcs instrumentation for health monitoring and boundary condition validation**
- **54 pcs instrumentation for health monitoring and boundary condition validation**
- **62 pcs instrumentation for hardware validation (each of 5 sets)**
Intersegment Seal Material Characterization

Oxide-Oxide Composites

Static Oxidation Tests up to 2400°F
- Alumina-Silica matrix with Alumina-Silica fibers
- Alumina matrix with Alumina-Silica fibers
- Alumina matrix with Alumina fibers

Ti$_2$AlC

Static Oxidation Tests up to 2200°F
- Alumina scale former
- Ductile >1900°F

FeCrAl Alloy

Machining into test coupons for static oxidation tests
Alumina scale former

YSZ (TBC–type material APS onto substrate, strip from substrate)

Evaluating ZrO$_2$ infiltration to achieve higher density
Next Steps

• Complete nozzle design ...
 Milestone

• Complete test cell definition...
 Milestone

• Order long lead rig materials

• Build feature test rigs

• Begin EBC testing
Q&A Discussion