#### Investigation of Autoignition and Combustion Stability of High Pressure Supercritical Carbon Dioxide Oxycombustion

PI: Wenting Sun

#### Co-PI: Devesh Ranjan, Tim Lieuwen, and Suresh Menon

School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332



Performance period: Oct. 2015 – Sept. 2018

UTSR Project: DE-FE0025174 PM: Seth Lawson 2017 UTSR Project Review Meeting

#### **Overview of the Scientific Problem**



- What fundamental combustion properties/knowledge we need in order to design combustor for SCO<sub>2</sub> oxy-combustion?
  - Kinetics and dynamics



#### Kinetic Challenges for SCO<sub>2</sub>-fuel-O<sub>2</sub> Mixtures



Deviation increases with pressure: knowledge gap Kinetic models must be validated at regime of interest



# Overview of the Scientific Questions and Proposed Work



So what?

So what?

- What is the fundamental combustion properties?
  - Experimental investigation of chemical kinetic mechanisms for SCO<sub>2</sub> Oxy-combustion (Task 1&2: Ranjan & Sun)
- How can we use the kinetic model to design combustors?
  - Development of a compact and optimized chemical kinetic mechanism for SCO<sub>2</sub> Oxy-combustion (Task 3: Sun)
- What is the combustor dynamics at this new condition?
  - theoretical and numerical investigation of combustion instability for SCO<sub>2</sub> Oxy-combustion (Task 4&5: Lieuwen, Menon & Sun)

# Task 1: Development of a High Pressure Shock Tube (complete)





# Task 1: Development of a High Pressure Shock Tube (complete)

10 Mechanism of operation First shock in Jan. 2017 8 Pressure (atm) 0 Diaphragm -2 4 8 10 0 2 6 Time (ms) **High Pressure Low Pressure** Lab-Frame Reflected Shock **Shock Tube Schematic** Reflected Shock 5 **Rarefaction Fan Contact** 5 **Surface** 2  $T_5 = 1000 - 4000 \text{ K}$ 3  $P_{5} > P_{2}$ Shock Front 1 Lab-Frame Incident Shock Location (x) 2 Measured P, calculated T  $T_2 = 500 - 2000 \text{ K}$ 6  $P_{2} > P_{1}$ 

Time (t)

### Study of High Pressure Autoignition - Facilities: mixture preparation



High accuracy Baratrons (**0.05%**) to measure partial pressure for mixture preparation





 With the second seco

Turbo molecular

pump

compositions

#### Magnetic stir to promote mixing

# **Example of Pressure Traces**





#### Unique features for high quality data

- **Challenges of High Pressure Shock Tube**
- Shock tube is not just a tube
- Boundary layer
   from moving shock
- For polyatomic gases, BL is much thicker
- ID of shock tube must be large
   – 150 mm





# **Challenges of High Pressure Shock Tube**



- Test time needs to be long
  - Long enough to capture autoignition
  - Avoid bifurcation region
  - Longer tube, longer test time (21 m)
- A failed example
  - $CH_4/O_2/Ar/CO_2=1:4:16:79$
  - P=40 bar, T=1488 K
  - No autoignition captured



BL

# **Facility Validation**

- Low pressure autoignition measurement and validation
  - P = 20 atm, T = 1641 K
  - $CH_4/O_2/Ar=1:4:95$
- Agrees well with simulation using Aramco 2.0 (as expected)
- Experiments vs. Stanford results
  - Agreed at similar conditions
  - e.g., CH<sub>4</sub>/O<sub>2</sub>/Ar (2/4/96)
  - Stanford: 13.19 bar 1760 K  $\tau_{ig}$ = 67 µs
  - GT: 16.5 bar 1737 K τ<sub>ig</sub>= 57 μs

Good agreement between expt. and sim.



# **Facility Validation**



- $CH_4/O_2/Ar=2:4:94$
- P=30 bar
- T= 1366 K
- Excellent between PMT signal (OH\* emission) and simulation with Aramco 2.0



# **Headaches from SCO<sub>2</sub> !?**

# **Real Gas Effect in Shock Tube**

- Negligible effect on thermodynamic properties (P, T) in region of interest
  - Small difference (<10 K) in high T (>1000 K) region
  - Kogekar et al., CNF 2017; Tang et al., IJCK 2006; Davidson et al., IJC 1996;
- It does NOT mean negligible effect on chemical reactions
  - Real gas non-unity activity coefficient (or fugacity) (negligible above 1100 K)
  - unknowns



n-dodecane/air at 80 atm

# CO<sub>2</sub> Decomposition



•  $CO_2$ decomposition  $- CO_2 \rightarrow CO+O$ 

- Favored at high T, low P
- May affect autoignition measurement
  - Loose demarcation



#### Task 2: Investigation of Natural Gas and Syngas Autoignition in sCO<sub>2</sub> Environment

- No study before in region of interest
- A new regime to explore!
- $CO_2$  has negligible chemical effect

e.g.:

- <sup>></sup>ressure (atm) Based on 1 to 15 atm results and simulation using GRI 3.0 and Aramco 1.3
- GT 17 atm expt. Agreed with Aramco 1.3 using same mixture with Hargis et al.



J.W. Hargis, E.L. Petersen, Energy & Fuels, (29) 2015 S. Vasu, D.F. Davidson, R.K. Hanson, Energy & Fuels, (25) 2011

# Autoignition with high CO<sub>2</sub> concentration: 15 bar



### Autoignition with high CO<sub>2</sub> concentration: 41 bar





#### Autoignition with high CO<sub>2</sub> concentration: 105 bar





19

#### Task 3: Development of a Compact and Optimized Chemical Kinetic Model for SCO<sub>2</sub> Oxy-combustion

- USC Mech II (111 species) is used as a starting point for future optimized mechanism
- A 27 species reduced mechanism<sup>1</sup> for natural gas and syngas is developed (<u>still too large</u> <u>for CFD</u>)
- A new 13 species model was developed with optimization
  - Covers 900 K to 1800 K,
     150 atm to 300 atm
  - Max 12% deviation



20

1. S. Coogan, X. Gao, W. Sun, Evaluation of Kinetic Mechanisms for Direct Fired Supercritical Oxy-Combustion of Natural Gas, TurboExpo 2016

#### Task 4: Analytical modeling of Supercritical **Reacting Jets in Crossflow**

- Analytical framework for reacting jets in cross-flow
  - connect flow dynamics to flame dynamics
  - Modeling explicit flame position dynamics
  - Modeling spatially integrated heat release dynamics as a function of flame position
- Understanding flow dynamics of a jet in cross-flow
  - provide key inputs to the velocity field used in the analytical model







# **Position Dynamics PDE**



$$\frac{\partial\xi}{\partial t} + \left(u - u_D(x,\xi)\right)\frac{\partial\xi}{\partial x} - v = \mathcal{D}\left(\frac{\partial^2\xi}{\partial x^2} - s_D(x,\xi)\right)\left[1 - \left(\frac{\partial\xi}{\partial x}\right)^2\right]$$

- Non-linear wrinkle convection
  - Flow based convection as well as position-coupled diffusion based convection
- Linear term from "Diffusion" of wrinkles
  - Similar to stretch effects in premixed flames (i.e. stretch correction to flame speed)
- Non-linear propagation-like term from diffusion
- Decompose all quantities into a steady time-average and time-dependent perturbation

 $\xi = \xi_0(x) + \xi_1(x,t)$   $u = u_0(x) + u_1(x,t) \qquad v = v_0(x) + v_1(x,t)$  $u_D = u_{D,0} + u_{D,1} \qquad s_D = s_{D,0} + s_{D,1}$ 



# **Flame Position Dynamics**





- Governing Physics
  - Wrinkle convection
  - Diffusion, similar to premixed flame stretch
  - Reactive type dynamics
- High Pe limit
  - Diffusion time-scale large compared to convection time-scale
  - Diffusion based convection 1/Pe<sup>2</sup>
  - Diffusion based propagation 1/Pe

# **Global Flame Dynamics**

• For acoustically compact flames, spatially integrated heat release is the dynamics relevant quantity

$$\dot{Q}(t) = \int_{flame} \dot{m}_{F}'' h_{R} dA = \int_{flame} \rho_{u} \mathscr{D} \left| \nabla \mathcal{Z} \right|_{\mathcal{Z}_{st}} h_{R} \sqrt{1 + \left(\frac{\partial \xi}{\partial x}\right)^{2}} dx$$
$$= \int_{flame} \dot{m}_{F,0}'' h_{R} dA_{0} + \int_{flame} \dot{m}_{F,0}'' h_{R} dA_{1} + \int_{flame} \dot{m}_{F,1}'' h_{R} dA_{0}$$

• Time-average heat release

$$\dot{m}_{F,0}'' = \rho_u \mathcal{D} \left. \frac{1}{\sqrt{1 + \left(\xi_{0,x}\right)^2}} \frac{\partial Z_0}{\partial y} \right|_{Z_{st}} \qquad dA_0 = \sqrt{1 + \left(\xi_{0,x}\right)^2}$$

 Note that for premixed flame with constant flame speed, this weighting was constant = flame speed

$$dA_{1} = \frac{\xi_{0,x}}{\sqrt{1 + (\xi_{0,x})^{2}}} \xi_{1,x}$$

Mass burning rate dynamics

$$\dot{m}_{F,1}'' = -\rho_u \mathcal{D} \frac{1}{\sqrt{1 + \left(\xi_{0,x}\right)^2}} \left[ \left(\frac{1 + \left(\xi_{0,x}\right)^2}{\xi_{0,x}}\right) \left(\frac{\partial Z_0}{\partial y}\right)_{Z_{st}} \xi_{1,x} + \frac{\partial^2 Z_0}{\partial y^2} \bigg|_{y \neq \xi_0(x)} \xi_1 \right]$$



# **Experiment Data Processing**



- Vortex Tracking
- Extract Phase roll-off from experimental data
  - Further data reduction and smoothing required to get meaningful information
- Physical parameters
  - Convection speed
  - Differences in leeward and windward side

 Table 2.3: Key JICF parameters for each test case.
 ■ : Unforced, non-reacting experiment.

 ■ : Forced, non-reacting experiment.
 ■ : Unforced, reacting experiment.

 ■ : Forced, non-reacting experiment.
 ■ : Forced, reacting experiment.

| Case | R/NR | J     | $\boldsymbol{S}$ | $Re_{j}$ | $Re_{\infty}$ | $T_{\infty}$ [K] | $f_{\rm F}  [{ m Hz}]$ | $A_{\mathrm{F}}\left[\mathrm{A}\right]$ |
|------|------|-------|------------------|----------|---------------|------------------|------------------------|-----------------------------------------|
| 1    | R    | 5.05  | 0.41             | 1980     | 10520         | 1241             | 0                      | 0.0                                     |
| 2    | R    | 4.72  | 0.40             | 1990     | 11500         | 1186             | 177                    | 0.6                                     |
| 3    | R    | 4.69  | 0.40             | 1980     | 11480         | 1187             | 177                    | 1.2                                     |
| 4    | R    | 4.84  | 0.41             | 1980     | 10970         | 1218             | 177                    | 1.5                                     |
| 5    | R    | 4.83  | 0.41             | 1980     | 11060         | 1211             | 250                    | 0.9                                     |
| 6    | R    | 4.78  | 0.40             | 1990     | 11280         | 1203             | 250                    | 1.5                                     |
| 7    | R    | 4.60  | 0.39             | 1990     | 11770         | 1179             | 340                    | 0.6                                     |
| 8    | R    | 4.67  | 0.40             | 1980     | 11490         | 1191             | 340                    | 1.5                                     |
| 9    | R    | 23.23 | 0.40             | 4420     | 11480         | 1191             | 0                      | 0.0                                     |
| 10   | R    | 22.40 | 0.40             | 4400     | 11780         | 1179             | 177                    | 0.6                                     |
| 11   | R    | 25.19 | 0.42             | 4400     | 10420         | 1247             | 177                    | 1.2                                     |
| 12   | R    | 23.59 | 0.41             | 4380     | 11200         | 1203             | 177                    | 1.5                                     |
| 13   | R    | 23.75 | 0.40             | 4400     | 11150         | 1206             | 250                    | 0.9                                     |
| 14   | R    | 23.89 | 0.40             | 4400     | 11230         | 1199             | 250                    | 1.5                                     |
| 15   | R    | 23.38 | 0.40             | 4400     | 11430         | 1192             | 340                    | 0.6                                     |
| 16   | R    | 23.67 | 0.40             | 4400     | 11330         | 1197             | 340                    | 1.5                                     |
| 17   | R    | 5.08  | 1.04             | 2590     | 10660         | 1236             | 0                      | 0.0                                     |
| 18   | n/a  | n/a   | n/a              | n/a      | n/a           | n/a              | n/a                    | n/a                                     |
| 19   | R    | 4.64  | 0.97             | 2590     | 11900         | 1171             | 177                    | 1.5                                     |
| 20   | R    | 4.68  | 1.00             | 2560     | 11490         | 1189             | 250                    | 0.9                                     |
| 21   | R    | 4.63  | 0.98             | 2550     | 11680         | 1178             | 250                    | 1.5                                     |
| 22   | n/a  | n/a   | n/a              | n/a      | n/a           | n/a              | n/a                    | n/a                                     |
| 23   | R    | 4.97  | 1.02             | 2550     | 10810         | 1219             | 340                    | 1.5                                     |
| 24   | R    | 25.32 | 1.04             | 5750     | 10610         | 1236             | 0                      | 0.0                                     |

# **Modeling Velocity Disturbances**

- Using experiment database
- Data Sampling
  - w.r.t. jet centerline co-ordinate
  - at windward and leeward vortex centerlines
  - conditioned to flame location
    - Leeward flame was too diffuse
- Spatial variation of phase roll-off from Fourier modes



$$u'(x,t) = \operatorname{Re}\left[\left\{\hat{A}(x)\exp\left(\frac{-i\omega x}{c_0}\right) + \hat{B}(x)\exp\left(\frac{-i\omega x}{u_0} + i\varphi(x)\right)\right\}\exp\left(-i\omega t\right)\right]$$





# Key Takeaways from Task



- PDEs for steady state and fluctuating flame position
  - Reduce the need for a full-field mixture fraction solution
- Global dynamics through spatially integrated heat release expressed in terms of flame position dynamics
  - Simplified expression for combustion dynamics modeling
- Identification of control parameter
  - From previously measured JICF data
  - Vortex tracking
  - Phase roll-off convection speed
  - Differences in speed between windward and leeward side

#### Task 5: LES Studies of Supercritical Mixing and Combustion





Baseline model <u>NOT</u> actual design

- <u>Mixing</u> and flame stability
- Systematic variation of design parameters
  - Momentum ratios for fuel and oxygen, flow rate, number of sets
  - Size, spacing, and locations of injectors
- Computational modeling may be more cost effective but include its own challenges
  - Autoignition kinetics (large uncertainty, maybe wrong)
  - Turbulence-chemistry closure
  - Real gas effects

#### **Recap of Last Year: Real Gas Effect**





- Global (highly simplified) kinetic model
- Reduced jet penetration with perfect gas EOS in comparison to Peng Robinson EoS – clearly shows RG effects
- Heat release also decreased with perfect gas EOS

#### 30

# Recap of Last Year: Flame Length and Combustion Efficiency

#### Combustion is not efficient

• Combustion efficiency estimated as:

$$\eta = 100 \times \frac{\dot{m}_{f,in} - \dot{m}_{f,out}}{\dot{m}_{f,in}} \sim 49\%$$

• Flame length,  $L_f \sim 14.5 D_{ox}$ 

- estimated as intersection of Z =  $Z_{st}$  and T = 1500 K

- $\eta$  needs to be improved
  - Inflow realistic turbulence
  - Modify J and jet spacing
  - Mass flow rate changes
  - Jet-staging and distributed mixing
  - Inflow swirling
- Mixing is the key



#### Temperature overlaid with stoichiometry line





# **FLUENT Simulation**



- Fluent simulation with circumferential injections
- Mixing is challenging



# Summary of Progress for Numerical Investigation



- Focus on jet mixing, LES of non-reacting mixing to identify where stoichiometric surface appear, then identify autoignition regions
  - Case 1: fuel jet behind O<sub>2</sub> jet by 28 mm
  - Case 2: O<sub>2</sub> behind fuel jet by 28 mm; Case 3: 14 mm
- LES using compressible adaptive-mesh-refinement (AMR)
  - Reduced finite-rate kinetics (from Task 3) used
  - Implemented in a PSR based network model
- Studies of reacting spatial mixing layer (SML) configuration
  - Canonical problem with some known features
  - CH<sub>4</sub>-O<sub>2</sub> mixing and reactions in CO<sub>2</sub> background
  - Study effect of pressure, details of the kinetics

# LES using AMR: Mixing in JICF

- AMR refines grid near the jet inlets.
- SGS closure accounts for AMR<sup>1</sup>



**Dynamic AMR<sup>1</sup>** 



| Temperature | (K) |
|-------------|-----|
|-------------|-----|

| Parameters                      | Value              |
|---------------------------------|--------------------|
| P <sub>ref</sub>                | 300 bar            |
| T <sub>cross</sub>              | 1100 K             |
| Ucross                          | 50 m/s             |
| Tjets                           | 300 K              |
| J <sub>Ox</sub>                 | 20                 |
| J <sub>F</sub>                  | 18.4               |
| D <sub>F</sub> /D <sub>Ox</sub> | 0.6                |
| Channel length                  | 75 D <sub>ox</sub> |



# Mixing Studies Using LES





- Z= 1 (fuel), Z = 0 (oxidizer); dashed black line: stoichiometric mixture fraction
- Cross flow: sCO<sub>2</sub> at 300 atm; Fuel jet diameter is 3 mm, O2 jet diameter is 5 mm
- Case 1 and 3 distance between jets is 28 mm; Case 2 14 mm
- A bigger and continuous zone of stoichiometry is visible when the two jets are closer indicating enhanced mixing
- Mixing dependent on injection locations & conditions difficult to optimize

# Task 5: LES Studies of Supercritical Mixing and Combustion



### Equilibrium Calculations using PSR



- Points were selected from the LES as an input to PSR
- Initial concentrations of species and temperature were selected at these points.
- The equilibrium temperature, species concentrations are tabulated in the next slide.
- From the table we see that the points
   7, 8 and 9 where the oxidizer and fuel have mixed we get combustion
- Shown for Case 2

# Task 5: LES Studies of Supercritical Mixing and Combustion



| Point | Temp.<br>Tin{K} | CH4<br>Conc. | O2<br>Conc. | CO2<br>Conc. | Temp.<br>Eq.{K} | CH4<br>Eq. | O2<br>Eq. | CO2<br>Eq. |
|-------|-----------------|--------------|-------------|--------------|-----------------|------------|-----------|------------|
| 1     | 361.22          | 0.989        | 0.0         | 0.011        | 361.22          | 0.989      | 0.0       | 0.011      |
| 2     | 385.95          | 0.980        | 0.0         | 0.02         | 385.93          | 0.980      | 0.0       | 0.020      |
| 3     | 695.79          | 0.325        | 0.0         | 0.675        | 645.30          | 0.313      | 0.0       | 0.687      |
| 4     | 363.14          | 0.0          | 0.999       | 0.001        | 363.14          | 0.0        | 0.999     | 0.001      |
| 5     | 364.06          | 0.0          | 0.998       | 0.002        | 364.06          | 0.0        | 0.998     | 0.002      |
| 6     | 474.49          | 0.0          | 0.948       | 0.052        | 483.78          | 0.0        | 0.947     | 0.053      |
| 7     | 654.53          | 0.028        | 0.545       | 0.427        | 1184.1<br>1     | 0.0        | 0.546     | 0.454      |
| 8     | 697.67          | 0.044        | 0.414       | 0.542        | 1446.9          | 0.0        | 0.325     | 0.675      |
| 9     | 807.32          | 0.042        | 0.236       | 0.722        | 1464.7          | 0.0        | 0.151     | 0.849      |
| 10    | 1026.6          | 0.005        | 0.076       | 0.919        | 1104.5          | 0.0        | 0.064     | 0.936      |
| 11    | 859.22          | 0.100        | 0.015       | 0.885        | 762.65          | 0.059      | 0.0       | 0.941      |

# **2D Spatial Mixing Layer**





- Splitter plate: 1.2 mm
- CH<sub>4</sub> jet of 3mm, 30 m/s, 300K
- O<sub>2</sub> jet of 5 mm,30 m/s, 300 K
- Outer jets of CO<sub>2</sub> at 50 m/s, 500k
- 1 atm, 200 atm and 300 atm cases
- 5-species reduced kinetics from Task 3
- New analysis shows that vaporliquid equilibrium (VLE) can occur under supercritical conditions



#### Mixing Studies, CO<sub>2</sub> Contours



Reacting Studies, Temp Contours

# Vapor-Liquid Equilibrium in Supercritical Mixtures

- Single species: the phase is uniquely defined by the equilibrium diagram
- Subcritical regime: jet exhibits atomization, droplets, and sharp gas/liquid interface
- Supercritical regime: Interface is diffused and no droplet formation
- Mixtures: VLE exists at interface for given (*p*, *T*) and composition *z*<sub>*i*</sub>.
- JICF can have local VLE regions in
  - CH<sub>4</sub>-CO<sub>2</sub>, O<sub>2</sub>-CO<sub>2</sub> interfaces
  - CH<sub>4</sub>-O<sub>2</sub>-CO<sub>2</sub>-H<sub>2</sub>O regions
- Critical properties of each component play a crucial role to determine VLE
- Need to include VLE effects to account for mixture effects



# Future of Task 5



- Revisit the earlier supercritical JICF mixing case, accounting for presence of VLE to reassess the problems seen in the past.
- Continue spatial mixing layer studies with different conditions
  - Binary mixing under supercritical conditions
  - Reacting cases under supercritical conditions
- Autoignition studies will require more detailed kinetics
  - 19 species chemistry from Task 3 available

# Summary of Year 2 Achievement



- High pressure shock tube commissioned
  - System validation (vs simulation, previous work)
  - Measurement of autoignition delays with high  $CO_2$  concentration (above critical pressure of  $CO_2$ )
- Different optimized reduced kinetic models developed and implemented in CFD
- Governing equation developed for theoretical frame work
- LES investigation of JICF
  - Not efficient on mixing
  - Sensitive to kinetic models
  - Jet mixing, quick estimation of autoignition location
  - Vapor-liquid equilibrium plays important role



Acknowledgement: UTSR Project: DE-FE0025174; PM: Seth Lawson 41