Oxy-Combustion Fundamentals for Direct Fired Cycles Pete Strakey, NETL

Outline

- Effects of pressure and diluents on flames.
- Identification of target conditions.
- Overview of characteristic time and length scales.
- CFD simulations of turbulent time and length scales.
- Chemical kinetic mechanisms.
- Carbon monoxide formation.
- Thermo-acoustic instabilities.

Effect of Pressure on Laminar Flame Speed

- Cantera with GRI 3.0 used to calculate premixed laminar flame speed.
- Flame speed with 31%O2/69%CO2 lower than air mainly due to lower diffusivity.

 $S_L \propto \sqrt{RR \cdot D}$ $D \propto \frac{1}{P}$

RR= Reaction Rate D= Molecular Diffusivity

Laminar Flame Thickness

$$\delta_L = \frac{\alpha}{S_L} \qquad \alpha = k/\rho C_p$$

Laminar Flame Speed

Cantera Premixed Laminar Flame Profiles

- Temperature profiles through flame region.
- CO2 dilution scaled to provide same equilibrium flame temperature as air flames.

• Flames get much thinner at high pressure.

Cantera Premixed Laminar Flame Profiles

- OH profiles through flame region.
- CO2 dilution scaled to provide same equilibrium flame temperature as air flames.

• Radical concentrations reduced at high pressure due to 3-body recombination reactions.

Cantera Non-Premixed Laminar Flame Profiles

- Temperature profiles through flame region.
- CO2 dilution scaled to provide same equilibrium flame temperature as air flames.

Cantera Non-Premixed Laminar Flame Profiles

NATIONAL ENERGY TECHNOLOGY LABORATORY

- OH profiles through flame region.
- CO2 dilution scaled to provide same equilibrium flame temperature as air flames.

Extinction Strain Rate & Ignition Delay Time

• AramcoMech 2.0 used for ignition delay time.

ATIONAL

HNOLOGY

Allam Cycle

- Goal is to estimate some characteristic combustion scales for high pressure oxy-fuel flames for direct-fired sCO2 cycles.
- Target is the Allam cycle conditions (O_2 15% to 30% molar concentration)*.

Table 1. ALLAM CYCLE KEY POINTS (ISO CONDITIONS)

Point	Pressure (Bar)	Temperature (°C)
Turbine Inlet (A)	300	1150
Turbine Outlet (B)	30	775
CO2 Compressor Inlet (D)	30	20
CO2 Compressor Outlet (E)	80	65
CO2 Pump Inlet (F)	80	20
CO2 Pump Outlet (G)	300	55
Combustor Inlet (I)	300	750

Figure 1. BASIC ALLAM CYCLE NATURAL GAS FLOW DIAGRAM.

Borghi Combustion Diagram

• Borghi Diagram indicates regime of combustion (wrinkled flames, corrugated flames, stirred reactor, etc.

C. Sorusbay, "Turbulent Premixed Combustion in Engines", Istanbul Technical University

• Included here for completeness...

Karlovitz Number (chemical time / Kolmogorov time)

K>1 means the smallest eddies can enter and thicken the flame front

 $\mathsf{D}a = rac{ au_{turb}}{ au_{chem}} = .247 \left(rac{k}{arepsilon}\right) \left(rac{S_L^2}{lpha}\right)$

 $Ka = \frac{\tau_{chem}}{\tau_{\kappa}} = \frac{\delta_L^2}{l_{\kappa}^2}$

Damkohler Number (turbulent time / chemical time)

Laminar flame thickness (thermal diffusivity / laminar flame speed)

Da>>1 means the chemistry is fast compared to turbulent mixing

 $\left(\begin{array}{c} \varepsilon \end{array} \right) \\ k^{1/2}$

Integral length scale (turbulent kinetic energy / turbulent dissipation rate)

Kolmogorov length scale (kinematic viscosity / turbulent dissipation rate)

Turbulent fluctuating velocity

 $u' = \sqrt{\frac{2k}{3}}$

50 MW Conceptual Combustor

NATIONAL ENERGY TECHNOLOGY LABORATORY

High-Pressure Fuel Turbopump

Turbulent Time and Length Scales

Two Limiting Cases:

NATIONAL ENERGY TECHNOLOGY LABORATORY

1) 25% of CO2 by mass mixed in with O2 ($X_{O2}=0.30, \phi=1.0$)

2) Fully mixed (100% of CO2 mixed in with O2) ($X_{O2}=0.09, \phi=1.0$)

Steady RANS k-e DRM19 reduced CH4 mechanism

No Combustion model

Borghi Diagram for Oxy-Combustion

- Two cases shown for 300 bar oxy-combustion define a range of conditions spanning the thickened, corrugated flame regime and stirred reactor.
- Significantly outside the range of gas turbine and IC engine operation.
- Requires assessment of appropriate turbulent combustion models.

IC Engines 300 bar sCO2 (.3102+.69CO2) $S_L = 0.58 \text{ m/s} (T_F = 2690 \text{ K})$ $\delta_L = 0.67 \mu \text{m}$ Ka=0.7 Tign=9.2e-4 s

Gas Turbines

300 bar sCO2 (.09O2+.91CO2) $S_L = 0.05 \text{ m/s} (T_F = 1610 \text{K})$ $\delta_L = 6.60 \mu \text{m}$ Ka=361 Tign=2.5e-3 s

Potential Range of Operating Conditions

- 30% O2 case looks like a conventional turbulent flame.
- 9% O2 case looks like autoignition.

<u>30%02/70%CO2</u>	<u>9%02/91%CO2</u>	
U = 30 m/s	U = 50 m/s	
$\tau_{\rm R}$ = 12.7 ms	τ _R = 7.6 ms	Large Eddy Simulations
τ_{T} = 2.6e-4 s	τ _т = 9.3e-5 s	
l _T = 1.9 mm	l _T = 2.0 mm	
τ _κ =3.4e-6 s	τ _κ =4.1e-7 s	
l _κ = 1.6 μm	l _κ = 0.36 μm	Т (К)
α = 3.9e-7 m ² /s	α = 3.3e-7 m ² /s	2.78e+03
S _L = 0.58 m/s	S _L = 0.05 m/s	2.67e+03 2.56e+03 2.44e+03
τ_{ign} = 0.92 ms	τ_{ign} = 2.5 ms	2.33e+03 2.21e+03
		2.10#+03 1.9B#+03 1.87#+03
		1.75e+03 1.64e+03 1.52e+03

U.S. DEPARTMENT OF

1.41e+03 1.30e+03 1.18e+03 1.07e+03 9.52e+02

- No detailed mechanisms validated at sCO2 conditions. Best available is likely Aramco Mech (U. Galway). Validated with flame-speed up to 60 bar and ignition delay to 260 bar. Likely better than GRI 3.0.
- Huge mechanism, 103 species, 480 reactions after reduction to C2 and smaller.
- Need for compact skeletal mechanisms amenable to CFD modeling (10-30 species maximum).

Need flame speed, species profiles and induction time data for direct-fired conditions!

Reaction Path Analysis, 0-D Reactor T=985K, CH4=.12989, O2=.27351, CO2=.5966

- Methane oxidation kinetics very different at 300 bar.
- More reaction paths play an important role, therefor larger skeletal mechanisms needed to adequately represent kinetics.

- Combination of reaction path analysis, flamespeed sensitivity and ignition delay time sensitivity.
- Optimized for Allam cycle combustor conditions
 - 300 bar
 - $T_{preheat} \sim 1000 K$
 - Oxidizer: $25\% O_2 + 75\% CO_2$
- Several skeletal mechanisms developed with 33, 29, 26 and 17 species.

Flame speed sensitivity at 300 bar

- Performance comparison of various skeletal mechanisms.
 - Flame speed and ignition delay improve with the inclusion of more species and reactions.
 - 33 and 29 species able to predict flame-speed and ignition delay very well.
 - 17 species able to predict flame-speed to within $\sim 40\%$ error.

- Performance comparison of various skeletal mechanisms.
 - All do very well for CO production profiles.
- CO prediction important for accurate cycle efficiency calculations.

Estimation of CO Production

Large Eddy Simulation, Dynamic Smagorinksy 17-species skeletal mechanism FDF Combustion Model, Modified Curl, C_M=2

Equilibrium Calcs

Flame (30% O2) : X_{CO} =.024 Comb Exit: X_{CO} = 1.2e-5

Fate of CO in Turbine

RANS, SST-kOmega, DRM19, V_{blade}=150 m/s, Pr=2.85

- CO concentration is well above equilibrium at turbine inlet conditions.
 - CO oxidation reactions are slow relative to residence time in turbine.
 - CO is effectively "frozen" at flame conditions.

- Preliminary cycle calculations indicate as much as a 1.6 percentage point decrease in cycle thermal efficiency per mole percentage of CO in the combustor exhaust.
- Drop off in cycle and process efficiency is due to an increase in compression power as a result of CO in working fluid.

Modeling Thermo-Acoustic Instabilities

NATIONAL ENERGY TECHNOLOGY LABORATORY

- Aramco17 (17 species, 45 reactions)
- 50 mW (1 kg/s CH4 flow).
- Oxidizer 25%O2 + 75%CO2 by mass.
- 3M cells, LES model
- Radial mode thermoacoustic instability @ 3kHz.
- Peak-to-Peak pressure oscillation 60% of mean combustor pressure.

Pressure Field (Pa)

OpenFOAM LES, pressure-based solver

Slice at Z=2 cm

- Oxy-combustion at 300 bar is somewhat uncharted territory.
 - Conditions more representative of rocket engines.
 - Limited data available.
- Need for validated detailed chemical kinetic mechanisms as well as reduced mechanisms.
- Must take care in selecting appropriate combustion models (fast mixing, flamelet, EDC, PDF, etc...).
- CO levels must be kept low ($X_{CO} < .0015$) for maximum cycle efficiency.
- Thermo-acoustic stability must be assessed.
 - Modeling can help.
 - Passive devises (baffles, Helmholtz resonators) may be necessary.

