Direct Fired Oxy-Fuel Combustor for sCO2 Power Cycles

Jacob Delimont, Ph.D. Nathan Andrews, Craig Nolen, Carolyn Day Southwest Research Institute

> Marc Portnoff Lalit Chordia, Ph.D. Thar Energy L.L.C.

> Wenting Sun, Ph.D. Georgia Tech

Subith Vasu, Ph.D. UCF

Sarah Monahan, Ph.D. Keith McManus, Ph.D. **GE-GRC**

Work supported by US DOE under DE-FE002401

11/2/2017

1

Outline

- Background
- Project Objectives
- Data From Bench Top Test
- Combustor Design
- Test Loop Design

11/2/2017

• Future Work

Why sCO2 Power Cycles?

- Offer +3 to +5 percentage points over supercritical steam for indirect coal fired applications
- High fluid densities lead to compact turbomachinery
- Efficient cycles require significant recuperation

11/2/2017

Third Generation 300 MWe S-CO2 Layout from Gibba, Hejzlar, and Driscoll, MIT-GFR-037, 2006

2017 University Turbine Systems Research Workshop

3

Why Oxy-Fuel Combustion?

- Capture 99% of carbon dioxide
- Higher turbine inlet temperatures possible

11/2/2017

Δ

Oxy-Combustion

- Oxygen + fuel
- Direct fired sCO2
 combustors have a third inert stream
- Challenge:
 - Mix and combust fuel without damaging the combustor

5

Project Objectives

- Design a 1 MW thermal oxy-fuel combustor capable of generating 1200°C outlet temperature
- Manufacture combustor, assemble test loop, and commission oxy-fuel combustor
- Evaluate and characterize combustor performance
 - Optical access for advanced diagnostics

6

Project Schedule

- Design Phase: 31 Dec 2017
 - Combustor design

– Loop design

- Manufacturing construction and commissioning: 1 Jan. 2018 – 31 Dec. 2019
- Test and data collection: 1 Jan 2020 31 March 2021

Outline

- Background
- Project Objectives
- Data From Bench Top Test
- Combustor Design
- Test Loop Design

11/2/2017

• Future Work

Bench Top Reactor

- 1/4in diameter
- Continuous flow auto-ignition reactor

 Band Heater
 Ory Comb Reactor

 Band Heater
 Ceramic Tube Heater

 Understand
 Ory Comb Reactor

 Understa

Inlet conditions
 ~900°C and
 200bar

Bench Top Reactor Temperature Profile

- Significant heat transfer within the reactor
- Auto-ignition occurred at a significantly lower temperature than expected
- **Combustion zone** temperature calculated based on a constant heat flux assumption
- **Combustion zone** temperature well below design temperature
 - Sufficient fuel and oxidizer for 1100°C

Results Discussion

- Fuel and oxidizer were sufficient to raise outlet temperature to ~1100°C
- Why didn't it?
 - Mixing time

- Chemical kinetics
- Heat transfer and wall effects
- Auto ignition occurred at high concentrations of CO2 at ~620°C

Outline

- Background
- Project Objectives
- Data From Bench Top Test
- Combustor Design
- Test Loop Design
- Future Work

Combustor Casing Design

Reinforcement collar needed for hot CO₂ center opening

- Calculated using ASME Section VIII Div. 1, UG-39
- 3.4" OD, 2.375" ID, 4.25" long collar satisfies conditions and minimizes interference with other lines

Inlet pipe will use a cooled-jacket liner to keep flange temperatures lower

Optical window concept uses three layers of windows to peer into combustion chamber

- Laser ignition
- Trouble shoot combustor operation
- Optical access for simple visible light diagnostics

Combustor Aero-Thermal Design

11/2/2017

No data available at conditions relevant to this application.

11/2/2017

Mechanisms are compared in a isobaric zero-dimensional reactor

Temperature vs. time results are presented for a range of temperatures and pressures

	554 °C	654 °C	754 °C	854 °C	954 °C
100 bar			Х		
200 bar	Х	Х	X*	Х	Х
300 bar			Х		

* - High and low equivalence ratios also evaluated for this point

Nominal starting composition for each case (mole fractions)

Mechanism	CO ₂	02	CH ₄	C ₂ H ₆
Aramco 1.3, USC-II, Georgia Tech, and UCF	0.902	0.066	0.032	-
SwRI 6-species	0.903	0.066	0.029	0.0015

• SwRI 6-species fuel quantity adjusted to match the adiabatic flame temperature of the USC-II case (that used pure methane)

T = 754°C, P = 200 bar, ϕ = 1.0

11/2/2017

Computational Design

- Early design efforts constrained by high inlet temperatures needed to operate in a recompression cycle ~900°C combustor inlet
- Recuperator technology unlikely to be able to support those temperature in the near future
- Lower inlet temperature allow for easier design of submerged aerodynamic components

New Explored Concept: Trapped vortex CFD setup

- ¼ Symmetry
- Mesh refinement near walls & injectors
- 18" total length with 5" inlet pipe
- Cavity injection at 20°C
- Fuel/CO2 mass fraction ratio was 25%/75% for all simulations
- O2/CO2 inlet streams were varied and are noted on results pages.
- Simulations were run with cold flow (reactions not activated) and with reactions activated

11/2/2017

2017 University Turbine Systems Research Workshop

22

Trapped vortex combustor simulations: Sim ID: 501-502, 504 **Cold Aft Injection**

11/2/2017

TVC Conclusion

- The study performed agreed with the risks discussed in the literature, in addition to the unknown risks of sCO2, specifically:
 - Combustor performance is sensitive to injector location and injector velocity
 - Mechanical deflector/mixer required to enhance mixing between cavity and main flow
 - Cooling walls and window visibility would also be another source of risk.
- The amount of risk has led to a halt in exploring this technology. A more conventional design is now being explored

Schematic of Combustor Design Concept

Range of CO2 Flow Splits to Primary Combustor & Bypass Cooling

Component	Mass Flow (kg/s)	
CH4	0.02	
02	0.08	
CO2 to combustor	0.6 - 0.8	
CO2 to bypass	0.925 – 0.725	
Total mass flow	1.625	

11/2/2017

Aiming for $T_{adiabatic}$ = 2700-3000 F for

flame stability

2017 University Turbine Systems Research Workshop

26

Combustor Design Point

Component	Mass Flow (kg/s)	
CH4	0.02	
02	0.08	
CO2 to combustor	0.626	
CO2 to bypass	0.899	
Total mass flow	1.625	

- Design point for adiabatic flame temperature of 3000 F
- CO2 flow distributed as diluent or as bypass as shown above
- GE in-house spreadsheet tools used to determine effective area and combustor size

11/2/2017

GE RANS Simulations

11/2/2017

GE LES Simulations

11/2/2017

GE Results

- 2in diameter combustor performed significantly better than 1.1in diameter
- Further variations in combustor sizing/residence time to be considered

11/2/2017

2017 University Turbine Systems Research Workshop

30

SwRI RANS Simulations

 Many simulation runs

CFD Modeling Setup

Compressibility

Pressure outlet

Mass flow inlet

 Four different cases reported here

Pseudo Steady State RANS

Standard wall function

Effusion cooling mass sources

Realizable $k - \epsilon$ model

Swirl Angle	Mesh Elements	
30°	614,909	
40°	628,966	
40°	2,126,683	
50°	657,858	
	Swirl Angle 30° 40° 40° 50°	

-

_

-

-

_

_

11/2/2017

Temperature Predictions

11/2/2017

Flow Predictions

CO Concentrations

Outline

- Background
- Project Objectives
- Data From Bench Top Test
- Combustor Design
- Test Loop Design
- Future Work

Combustion Loop P&ID

11/2/2017

Sunshot Test Loop

- The project will use the "Sunshot" loop currently being commissioned at SwRI
- Sunshot turbine will be replaced with letdown valve

Fuel Supply System

- Major challenge to supply oxygen to a 700°C flow
- Torch ignitor system

Water Separation

- Water is not particularly soluble in CO_2 below 100°C
- Cascaded water system prevents excess CO₂ loss from cooling water

Water/CO₂ Equilibrium Testing

- Phase equilibrium test ongoing at Thar Energy
- Testing to confirm solubility limits of water in CO₂
- Needed for modeling of water seperation

Outline

- Background
- Project Objectives
- Data From Bench Top Test
- Combustor Design
- Test Loop Design

11/2/2017

• Future Work

Next Steps

- Finalize combustor design
 - Heat transfer
 - Injector design
 - Optical access

- Finalize quotes on loop and fuel systems
- Finalize combustor manufacturing plan

QUESTIONS?

11/2/2017

