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* Project Objectives

e Data From Bench Top Test
e Combustor Design

e Test Loop Design

e Future Work
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Why sCO2 Power Cycles?

e Offer +3 to +5 percentage

points over supercritical St abin: 5 siges 250 VW

Mitsubishi Heavy Industries Ltd, Japan (with casing)

steam for indirect coal g | T M 6T MW

Supercritical CO; turbine: 4 stages / 450 MW (300 MW,)

fired applications ™ [ o tomil

e High fluid densities lead
to compact
turbomachinery

e Efficient cycles require

significant recuperation

Third Generation 300 MWe S-CO2 Layout from Gibba, Hejzlar, and Driscoll, MIT-GFR-037, 2006
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Why Oxy-Fuel Combustion?
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P4
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P4a
COOLING OUT COOLING IN

e Capture 99% of carbon
dioxide

 Higher turbine inlet
temperatures possible
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Oxy-Combustion

Cooler

Water
Removal

\ 4
Excess CO2
Removal

Turbine

Direct Fired Oxy-
0, Combustor

N

Fuel /
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CO, + Water

CO, from
—_—

Recuperator
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e Oxygen + fuel

 Direct fired sCO2
combustors have a
third inert stream

e Chal

— Mix and combust fuel
without damaging the
combustor

enge:
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Project Objectives

 Design a 1 MW thermal oxy-fuel combustor
capable of generating 1200°C outlet
temperature

 Manufacture combustor, assemble test loop,
and commission oxy-fuel combustor

e Evaluate and characterize combustor
performance

— Optical access for advanced diagnostics
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Project Schedule

e Design Phase: 31 Dec 2017
— Combustor design
— Loop design

e Manufacturing construction and
commissioning: 1 Jan. 2018 — 31 Dec. 2019

e Test and data collection: 1 Jan 2020 - 31
March 2021
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Outline

e Data From Bench Top Test

I
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Bench Top Reactor

e 1/4in diameter
e Continuous flow
auto-ignition

reactor

* Inlet conditions
~900°C and
200bar

I
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Bench Top Reactor Temperature Profile

e Significant heat transfer
within the reactor

e Auto-ignition occurred 080
at a significantly lower 660
temperature than 640
expected £ 620

e Combustion zone £ 600
temperature calculated § sso
based on a constant E 560
heat flux assumption = c40 ——— Reactor Qutlet Temperature (°C)

° Combustion zone 590 Reactor Inlet Temperature (°C)
temperature well below Calculated Reaction Zone Temperature (°C)
design temperature 00 10 20 30 40 50 60

— Sufficient fuel and Time (min)

oxidizer for 1100°C
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Results Discussion

e Fuel and oxidizer were sufficient to raise
outlet temperature to ~1100°C

e Why didn’t it?
— Mixing time
— Chemical kinetics

— Heat transfer and wall effects

e Auto ignition occurred at high concentrations
of CO2 at ~620°C

. nnm"!ﬁ
macHlNERy




Outline

e Combustor Design

T
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Combustor Casing Design

Cooling CO,
Cooling CO,
Fuel
0O,
CO2 #
Cooling
CoO,
Cooling CO,
Cooling CO,
Pressure: 250 bar
Temperature: 375-700 °C
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Reinforcement collar needed for hot

CO, center opening

e (Calculated using ASME Section VIII Div. 1, UG-39

e 3.4” 0D, 2.375” ID, 4.25” long collar satisfies conditions and

minimizes interference with other lines
Torch Ignitor

Cooling

Cooling
Co,

Gas Sampling

Lines
®
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Inlet pipe will use a cooled-jacket liner
to keep flange temperatures lower

Flange pair allows for
access to removable liner

Reinforcement integral to
inlet pipe allows full
penetration weld to flange

Cooling flow injection

Inlet liner held in place using
snap-ring or other method

into casing

Inlet liner extends l

® RO B
2017 University Turbine Systems Research m“"‘
11/2/2017 15 !
Workshop Ry




Optical window concept uses three
layers of windows to peer into
combustion chamber

e Laserignition

* Trouble shoot
combustor
operation

e Optical access for
simple visible
light diagnostics

I
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Combustor Aero-Thermal Design
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Kinetics Knowledge Base

Current Application

Pressure P up to 200 bar
Xco, Up to 0.96 (mostly as diluent)
Sparse data at high pressure, low CO, @
Well-Developed Mechanisms Knowledge front
P up to 20 bar
Xco, < 0.10 (mostly as product) /
Sparse data at low pressure, high CO,
>

CO, concentration

No data available at conditions relevant to this application.
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Mechanisms are compared in a
isobaric zero-dimensional reactor

Temperature vs. time results are presented for a range of temperatures and pressures

554°C | 654°C | 754°C | 854°C | 954°C

100 bar X
200 bar X X X* X X
300 bar X

* - High and low equivalence ratios also evaluated for this point

Nominal starting composition for each case (mole fractions)

Mechanism co, o, CH, C,H,
Aramco 1.3, USC-Il, Georgia Tech, and UCF 0.902 0.066 0.032 -
SwWRI 6-species 0.903 0.066 0.029 | 0.0015

* SwRI 6-species fuel quantity adjusted to match the adiabatic flame
temperature of the USC-Il case (that used pure methane)

*
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Temperature (K)

T=754°C, P =200 bar,$=1.0

T, = 1027 K, P = 200 bar, t = 0-20 ms

T, = 1027 K, P = 200 bar, t = 20-50 ms
1500 T T 1487.0 T T T T T
1400 : 5 5 : :
— 1486.0
e
1300 b
2
© 1485.5
U
(=1
1200 E
F 1485.0
1100
1484.5
10%9000 0.605 0.0|10 0.0|15 0.020 148409020 ] O.OIZS 0.D|30 0.D|35 0.640 0.0l45 0.050
Time (s) Time (s)
— SwRI 6-species — GT 13-species == USC-II — SwRI 6-species — GT 13-species == USC-II
— GT 12-species — UCF 16-species == Aramco 1.3 — GT 12-species — UCF 16-species == Aramco 1.3
I
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Computational Design

e Early design efforts constrained by high inlet
temperatures needed to operate in a
recompression cycle “900°C combustor inlet

 Recuperator technology unlikely to be able to
support those temperature in the near future

 Lower inlet temperature allow for easier
design of submerged aerodynamic
components
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New Explored Concept: Trapped vortex
CFD setup

e  JSymmetry

e Mesh refinement near walls & injectors

e 18" total length with 5” inlet pipe

e Cavity injection at 20°C

*  Fuel/CO2 mass fraction ratio was 25%/75% for all
simulations

e 02/CO2inlet streams were varied and are noted
on results pages.

*  Simulations were run with cold flow (reactions
not activated) and with reactions activated

c02+02 |

PS

CO2+Fuel
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Trapped vortex combustor simulations:
Sim ID: 501-502, 504
Cold Aft Injection

Velocity

Velocity )
Vector 1 t’:::'—',“r W"“:;m‘m

4.041e+000 4.041e+000 '

25% 02; V=1 m/s

3.031+000 303724000 3.188e+000

2.021e+000 C02+‘F__‘f‘|_;_y_f1 m/s 2.125e+000

101l 25% 02; V=1m/s 1.010e+000 1.063e+000

B
T T S

0.0005+600 e e, Wt ; B SOl T i — T 0.000e+000 4

[ms*-1) = ment] [m 1)
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TVC Conclusion

e The study performed agreed with the risks discussed in
the literature, in addition to the unknown risks of
sCO2, specifically:

— Combustor performance is sensitive to injector location
and injector velocity

— Mechanical deflector/mixer required to enhance mixing
between cavity and main flow

— Cooling walls and window visibility would also be another
source of risk.

e The amount of risk has led to a halt in exploring this
technology. A more conventional design is now being
explored

Swil




Schematic of Combustor Design
Concept

Dilution/cooling

CO2 +
02
mixing
element

Combustor

Dilution/cooling
— co2 1

Basis: DLN-1 primary fuel nozzle

Wide operability, stable flame, and extensive experience with this
design

I
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Range of CO2 Flow Splits to Primary Combustor &
Bypass Cooling

Component Mass Flow 4500
(kg/s)
CH4 0.02 _ ‘
= o
02 0.08 -§ 3500 '.'
CO2 to combustor 0.6-0.8 § 3000
o
CO2 to bypass 0.925-0.725 2500 o.."
Total mass flow 1.625
2000

0 0.25 0.5 0.75 1 1.25
mdot CO2 to swirler (kg/s)

Aiming for T, . patic = 2700-3000 F for

flame stability

RO B
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Combustor Design Point

Component Mass Flow
(kg/s)
CH4 0.02
02 0.08
CO2 to combustor 0.626
CO2 to bypass 0.899
Total mass flow 1.625

Design point for adiabatic flame temperature of 3000 F

CO2 flow distributed as diluent or as bypass as shown above

GE in-house spreadsheet tools used to determine effective area

and combustor size
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GE RANS Simulations

1.1 inch comb. diam. | 2 inch comb. diam.

CH4
mole frac

0.2

ST RUTATING
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GE LES Simulations

1.1 inch comb. diam. 2 inch comb. diam.

1.1 inch comb. diam.

. %;:‘ 1900
Pl 2

00

’ ROTATIN
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GE Results

e 2in diameter combustor performed significantly
better than 1.1in diameter

e Further variations in combustor sizing/residence
time to be considered

1.1 inch comb. diam.

i

Temp [K]

1500
¥ b
300
I
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SwWRI RANS Simulations

. . Simulation Name Swirl Angle Mesh Elements
e Many simulation Variation 30 30° 614,909
Variation 40C 40° 628,966
runs Variation 40F 40° 2,126,683

reported here

CFD Modeling Setup

- Pseudo Steady State RANS z22E
- Realizable k-€ model i

- Standard wall function

- Compressibility

- Pressure outlet

- Mass flow inlet

- Effusion cooling mass sources
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Temperature Predictions
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Flow Predictions
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Outline

e Test Loop Design
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Combustion Loop P&ID
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Sunshot Test Loop

 The project will use the
“Sunshot” loop
currently being
commissioned at SwRI

e Sunshot turbine will be
replaced with letdown
valve

:l._‘!- 1 B ' -:_ / E = | 5
;‘ g -! i "-_ ;; .‘ ) :” v —:
= o =, g B g {--;:-"u;;', A2 ) A
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Fuel Supply System
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Water Separation

* Water is not sty

particularly s conne l

soluble in CO,
o <) ’
beIOW 100 C Water Boost Pump ¥“/

Water/CO2 Leaving DCC

—7 T T T T T Tooling TowerFeed 1

e Cascaded water cuwsencorseun
Heat Rejection HX |

SyStem preve Nnts V
excess CO, loss / X
O mmnmmin

from cooling water

D
®
11/2/2017 2017 UniVerSith\;erlinﬁ Systems Research .
orenop wipNEy




Water/CO, Equilibrium Testing

i Temperatures to 150°C

* Phase equilibrium
test ongoing at Thar
Energy

i )
Vessel with moving piston L’ S
Horizontal position o

e Testing to confirm
solubility limits of
water in CO,

* Needed for modeling
of water seperation

e
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Outline

e Future Work
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Next Steps

* Finalize combustor design
— Heat transfer
— Injector design
— Optical access

e Finalize quotes on loop and fuel systems

* Finalize combustor manufacturing plan

I
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