NATIONAL ENERGY TECHNOLOGY LABORATORY

REVIEW MEETING

Design, Fabrication and Performance Characterization of

Near-Surface Embedded Cooling Channels with an Oxide Dispersion Strengthened (ODS) Coating Layer

Award Number: DE-FE0025793 Period of Performance :10/1/15 to 9/30/18

University Turbine Systems Research

Outlines

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan

≻ Tasks

- 1. Advanced Impingement
- 2. ODS Coating (AM Assisted)
- 3. ODS Powders Fabrication and Characterization
- 4. Microstructural and Mechanical Properties Characterization
- 5. Detailed Experimental Measurement and Validation

Technical Background/Approach

Airfoil metal temperature distributions (in K) h_c=3000W/m²-K → Gas temperature: Hydrogen-fired turbine (~1430°C)

Near surface 'skin cooling' or 'double-wall' internal cooling arrangement leads to a significant reduction of metal surface temperature, ~50 – 100°C, compared to conventional serpentine cooling designs

Siw, S.C., Chyu, M.K., Karaivanov, V.G., Slaughter, W.S., and Alvin, M.A., 2009, "Influence of Internal Coolinjg Configuration on Metal Temperature Distributions of Future Coal-Fuel Based Turbine Airfoils," ASME Turbo Expo 2009, Paper No. GT2009-59829.

Skin Cooled Bulk Substrate Metal Temperature as a Function of Channel Heat transfer Coefficient and Coolant Temperature

Bunker, R.S., 2013, "Gas Turbine Cooling: Moving from Macro to Micro Cooling," ASME Turbo Expo 2013, Paper No. GT2013-94277

Near Surface Embedded Channel Cooling

Technical Challenges

- Design optimal aero-thermal configuration
- ODS powder fabrication, ODS layer deposition processing
- Scale-up and commercial manufacturing of test articles

Objectives

>To design highly-heat-transfer augmented and manufacturable internal cooling channels for the development of NSECC.

To produce ODS particles within 45-105 microns which will be used in an additive manufacturing (AM) process based on laser deposition to build NSECC test modules

>To develop fabrication process through additive manufacturing for coating either a densified ODS layer over a grooved single crystal superalloy substrate to form an enclosed NSECC, or an ODS layer with cooling channels embedded within the ODS layer atop a single crystal superalloy metal substrate

>To characterize the thermal-mechanical material properties and cooling performance of the AM produced ODS-NSECC protective module under high-temperature conditions. Comparison with the state-of-the-art cooling technology will be made and the performance improvements over the standards will be assessed

Project Work Breakdown Structure

Research Task Plan

Milestones

Solar Turbines

Design, Fabrication and Performance Characterization of Near-Surface Embedded Cooling Channels with an Oxide Dispersion Strengthened (ODS) Coating Layer

Research Task Plan (3 years)

	Title	Planned Date	Verification Method
	A - Heat transfer and fluid flow		
\checkmark	experiments of test sections and test		Data analysis and comparison to
	modules	3/31/2017	bench data
	B - Produce and characterize ODS		
$\mathbf{V}_{\mathbf{v}}$	powders	3/31/2017	XRD and SEM
\checkmark	C - ODS coating on substrate	3/31/2016	Optical micrographs, SEM
	D - Fabrication of NSECC on grooved		
	single crystal superalloy substrate	9/30/2016	Optical micrographs, SEM
	E - Fabrication of NSECC on flat single		
V	crystal superalloy substrate	12/31/2017	Optical micrographs, SEM
	F - Thermal cyclic loading tests	3/31/2018	Optical micrographs, SEM
	G - High temperature experiments		Data analysis and comparison to
	(Validation)	9/30/2018	bench data (SOTA standards)

Solar Turbines Project Timeline1

Task Name		Year 1		Year 2			Year 3					
		Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4
Task 1.0 - Project management and planning												
Task 2.0 - Heat transfer characterization of advanced NSECC Concepts at low temperature												
Subtask 2.1 Identify potential geometries/configurations						V						
Subtask 2.2 Conduct numerical calculations (ANSYS CFX)							V					
Subtask 2.3 Fabricate test sections and test coupons							V					
Subtask 2.4 Conduct heat transfer experiments and fluid flow measurements								V				
Milestone A						\blacklozenge						
Task 3.0 - ODS Powders Fabrication and												
Characterization												
Subtask 3.1 Develop optimal process parameter to												
produce ODS powder												
Subtask 3.2 Installation, adjusting and training for powder												
fabracation equipments												
Subtask 3.3 Characterize the powder particle size												
distribution												
Milestone B						\blacklozenge						

Solar Turbines Project Timeline2

Task Name					Year 2				Year 3			
		Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4
										I		
Task 4.0 - AM assisted ODS Coating												
Task 4.1 Development and process optimization to coat an												
ODS Layer on single crystal superalloy substrate			V /	·								
Milestone C		\blacklozenge	\mathbf{V}									
Task 4.2 Development and process optimization to												
fabricate NSECC on grooved single crystal superalloy					IV,	-						
Milestone D				\blacklozenge	V							
Task 4.3 Development and process optimization to												
fabricate NSECC on flat single crystal superalloy substrate										\mathbf{V} ,		
Milestone E										V		
Task 5.0 - Microstructural and Mechanical												
Properties Evaluation												
Task 5.1 Qualification on AM fabricated ODS Alloy												
Specimens										V /		
Task 5.2 Iso thermal experiment on ODS Alloy Specimens										\checkmark		
Task 5.3 Thermal cyclic experiment on ODS Alloy												
Specimens												
Milestone F												
Task 5.4 Thermal/mechanical property measurement of												
ODS Alloy Specimens												
Task 6.0 - Heat Transfer Characterization of												
ODS/NSECC Protected Single Crystal Superalloy												
Coupon under High Temperature Environment												
Milestone G												•

University Turbine Systems Research

Outlines

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan

➤ Tasks

1. Heat Transfer Characterization

- 2. ODS Coating (AM Assisted)
- 3. ODS Powders Fabrication and Characterization
- 4. Microstructural and Mechanical Properties Characterization
- 5. Detailed Experimental Measurement and Validation

Task 1 Heat Transfer Characterization

Objective: Develop internal air foil cooling technologies capable of additive manufacturing and suitable for surface embedding, and seek for heat transfer enhancement in the meantime.

Advanced Impingement

Challenge:

Cooling channels embedded near the outer surface have small sizes and irregular shapes. Distributing the coolant to feed the channels will be more difficult than traditional cooling concepts. In the meantime, this novel cooling concept still requires further enhancement of local heat transfer to achieve higher efficiency.

Different patents showing double wall cooling by UTC, Siemens and Florida Turbine Technologies

NATIONAL ENERGY TECHNOLOGY LABORATORY

11

Heat Transfer Test Facilities

Test Rig for AM Parts based on thermocouples

Test Rig for Conjugate Heat Transfer based on IR

Test Rig for Scaled up Models based on TLC

Test Section Thermocouples Test Rig for Steady State based on thermocouples NATIONAL ENERGY TECHNOLOGY LABORATORY

Wall Jets Cooling Channels

• Concept:

- Confine the coolant to the most near surface areas to achieve high heat removal capability.
- Enhanced heat transfer on the side of hot surface while lower heat transfer on the inner side.

Hot Surface

Confining Features

- Identified Geometry:
 - Slot wall jet
 - Chevron wall jet

rget Surface

Wall Jet Coupons

Slot Type Wall Jets

Chevron type jets

Slot Type Wall Jets

14

More uniform heat transfer than jet impingement. •

Chevron Type Wall Jets

CD: downstream chevron

- BR was a dominating parameter.
- Downstream chevron had lower heat transfer enhancement and lower pressure drop.

All Geometries Comparison

- Compared with Gnielinski correlation for smooth channel, the wall jet geometries increased the heat transfer by 4~10 times.
- Chevron wall jets were the most efficient in this study, with similar heat transfer of slot wall jets by lower pressure drop.
- Blockage ratio was a dominating parameter for wall jets.

University Turbine Systems Research

Outlines

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan

≻ Tasks

- 1. Heat Transfer Characterization
- 2. ODS Coating (AM Assisted)
- 3. ODS Powders Fabrication and Characterization
- 4. Microstructural and Mechanical Properties Characterization
- 5. Detailed Experimental Measurement and Validation

Task 3: ODS Coating with AM Assisted

Objective: Develop and optimize processing parameters for fabricating an ODS layer atop of superalloy substrate of turbine airfoils

Approach

Produce a series of test coupon with densified ODS layer atop of single crystal nickel based superalloy substrate using varying major parameters.

- Laser power, powder feeding rate, deposition speed, hatch spacing, hatch pattern

LENS 450 System at Pitt

Scott M. Thompson et al.

Inert Gas

Metallic Additive Manufacturing

As metallic additive manufacturing technologies matured, it became possible for complex metal product to be manufactured by this innovative technology, which also provides great capabilities to <u>make</u> complex geometries for turbine airfoil cooling channels.

NATIONAL ENERGY TECHNOLOGY LABORATORY

19

AM Control Parameters

LENS Key Parameters:

laser power, motor rate, gas flow rate, hatch pattern

500x

1200°C 2h 1250°C 2h 500 µm 500 µm Porosity: 34.37% Porosity: 35.37% 500x 500> 500x Н 500 µm н н 1100 °C 4h 1350°C 2h 500 µm 500 µm Porosity: 12.82% Porosity: 14.22%

500x

н

500x

H 1300 °C 4h ^{00 μm} Porosity: 5.15%

ExOne X1-Lab Key Parameters: dwelling temperature, dwelling time

Additive Manufactured ODS Coating Layers and Cooling Channels

- Phase 0: 1200°C, 2000h, 1100 °C, 2480 cycles, Air Environment
- Phase 1: 1100°C, 900h, Air Environment, (ongoing)
- Phase 2: 1100°C, 400h, Air Environment, (ongoing)

Hardness Tests of ODS material Produced by Different Additive Manufacturing technologies

EOS IN718

2nd generation supperalloy

	Sample	Hardness			
Dhase 0	Coating layer made by 250W laser in LENS450	HV382.0			
Phase 0	Coating layer made by 200W laser in LENS450	HV390.3			
Phase 1	Phase 1 ODS top wall made by LENS 450, 250W				
Dharan	Full ODS channel made by X1-Lab, sintered at 1300C for 4 hours	HV272.8			
Phase 2	Full ODS channel made by LENS 450, 250W	HV335.4			
Reference	2 nd generation superalloy substrate, single crystal	HV410.3			
	Inconel 718 coupons made by EOS	HV368.7			

University Turbine Systems Research

Outlines

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan

≻ Tasks

- 1. Heat Transfer Characterization
- 2. ODS Coating (AM Assisted)
- 3. ODS Powders Fabrication and Characterization
- 4. Microstructural and Mechanical Properties Characterization
- 5. Detailed Experimental Measurement and Validation

Task 6: ODS Powders Fabrication and Characterization

Objective: Produce ODS particles with proper sphericity and spreadability, which will be used in additive manufacturing (AM) processes to build lattice test modules.

Approach

- > Powder mechanical alloying using Hosokawa Mechano-Chemical Bonding (MCB) followed by Ball Milling (BM)
 - For MCB, powders are subjected to substantial compression, shear, mechanical forces under high rotating condition (~4000 rpm), through a gap between chamber and press head
 - Enable smaller particles to be dispersed uniformly and bonded onto base(host) particles without using binders.
 - Improved particle sphericity, ideal for precision mixing of nano and submicron powders.
 - Grain boundaries of host particles are pinned by nai
 - minimized grain growth during sintering.

Why MCB + BM?

Structural patterns of nanocomposite particles [T. Yokoyama and C. C. Huang, KONA No.23 (2005)]

Kang, B.S., Chyu, M.K., Alvin, M.A., and Gleeson, B.M, "Method of Producing an Oxide Dispersion Strengthened Coating and Micro-Channels," US Patent 8609187 B1, 17, 2013

ODS Powder Compositions (in weight %)

ODS Powder Characterization

- TEM BF image (a) shows a layer of Y₂O₃ thin film with thickness about 25nm around the edge of particle. The film thickness is relatively homogeneous.
- HREM image (b) shows the fine structure of the thin film. Most area of the film is amorphous and the corresponding FFT (Fast Fourier Transform) image show the diffusive feature.
- There is crystal structure within film as FFT indicated. The embedded FFT shows the spots and image shows the orientation fringe. The growth of film may involve crystallization of Y₂O₃.

XRD Characterization of ODS Powder

Ball Milled ODS Powders after MCB processing at 400 rpm for 15 and 25 hours

15 hours

25 hours

Ball Milled ODS Powders after MCB processing at 400 rpm for 30 and 40 hours

30 hours

40 hours

Ball Milled ODS Powders after MCB processing at 400 rpm for 50 hours

50 hours

XRD of ODS Powders MCB only, MCB + Ball Mill for 20 hours, and MCB + Ball Mill for 40 hours.

- C5 depicts MCB plus ball milling process for 20 hours at 400 rpm, with a BPR of 15:1.
- C6 depicts MCB plus ball milling process for 40 hours at 400 rpm, with a BPR of 15:1.

University Turbine Systems Research

Outlines

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan

≻ Tasks

- 1. Advanced Impingement
- 2. ODS Coating (AM Assisted)
- 3. ODS Powders Fabrication and Characterization
- 4. Microstructural and Mechanical Properties Characterization
- 5. Detailed Experimental Measurement and Validation

ODS Coating (AM Assisted)

TOP VIEW

ODS Strip Deposition Samples

Cross Section of Laser Deposited

Task 4: Microstructural and Mechanical Properties Evaluations

Objective: Characterize the thermal-mechanical material properties and cooling performance of the AM produced ODS integrated transpiration and internal cooling module under high-temperature conditions.

Approach

- Advanced microstructural characterization
 - OM, EDX, XRD, SEM, TEM
- Micro-indentation using in-house test rig
- > Thermal cyclic tests

Controlled environment high temperature micro-indentation system (WVU)

Sample

ODS Coating layers on flat plate substrates

Gridding and Cutting of ODS Coated Coupons

Schematic of the cyclic thermal exposure apparatus setup (WVU)

Durability/Damage Assessment of Advanced Turbine Components Multiple Loading/Partial Unloading Micro-Indentation

ODS Mechanical Property Measurement

	200 W	150 W	100 W	Substrate
As-received	174.4	173.8	227.6	126.5
15 cycles	141.5	80.9		100.2
40 cycles	132.1	85.5		109.1
	143	86.8		
80 cycles	113.2	59.4	57.3	58.7
Γ	113	58.4	57.4	61
ΙΓ				56.2
160 cycles	110.3	68.8	62.4	
Γ	135.4	65.4	61.2	
	118.2			
240 cycles	210	72		
	213.5	88.8		
360 cycles	197.3	123.4		123
	181.5	136.1		125.7
480 cycles	250.5	100.5	63.8	124.9
	229.4	98.2	59	141.7
600 cycles	183	84.7	163.6	124.6
	225	96.5	139	140.2
720 cycles	201.5	176.5	116.1	155.8
	205.4	200.4		168.9
1040 cycles	194.6			99.3
	188.7			92.9
1080 cycles	343.0	168.2	174.8	123.6
	261.2	142.1		141.9

** Each cycle consists of moving test sample to the furnace within 15 minute and kept at 1100 °C for 45 minutes and moved out within 15 minutes, kept for 45 minute at room temperature.

ODS Mechanical Property (cont.)

	200 W	150 W	100 W	Substrate
1280 cycles	165.4	171.8	144.7	
	132.9	134.0	124.4	
1480 cycles	202.6	116.3		
	162.8	142.3		
1880 cycles	164.5	104.3	93.2	
	110.3	102.7	104.7	
2080 cycles	148.8	116.8		
	113.4	95.7		

** Each cycle consists of moving test sample to the furnace within 15 minute and kept at 1100 •C for 45 minutes and moved out within 15 minutes, kept for 45 minute at room temperature.

Stable alpha Al₂O₃ oxide layer at 240 cycles (200 W sample)

100W ODS Coating, 1280 cycles

- Oxide Layer Failure
- Oxygen diffused into the ODS layer
- Abnormal aggregation of Aluminum Oxide inside ODS layer

100W ODS Coating, 1280 cycles

γ ' Phase Transition (150 W ODS Coating)

1280 thermocycles Young's Modulus, E = 126.8 GPa **1480** thermocycles Young's Modulus, E = 97 GPa

2080 cycles 150W ODS layer

γ' Phase Transition (150 W ODS Coating)

- After 1480 cycles, the γ' phase near oxide layer disappeared, and coarsening phenomena began to occur.
- After 1880 cycles, the γ ' phase coarsened and migrated toward oxide layer
- After 2080 cycles, continued and accelerated coarsening and coalesce of γ' phase with phase changed to dendrite crystal structure at the coalesce site

150W ODS Coating - Summary

AM-assisted ODS Coating Characterization

γ' phase in 200W ODS Coating

2080 cycles 200W ODS Coating

200W ODS Coating - Summary

- Stable secondary γ ' phase near oxide layer up to 1880 cycles
- After 1880 cycles, the γ' phase coarsened with higher coarsening rate near the oxide layer. However, no dendrite phase is observed at 2080 cycles.
- Ostwald ripening mechanism γ' phase will form larger particles and tend towards spherical in shape. (T. J. Carter, 2004)
- The γ' will slowly diffuse into γ-matrix (in dendrites form), and will cause the creep strength diminishes.
- Due to coarsening of γ' phase (eventually the dendrite phase formation), mechanical property/strength will be substantially weakened. The measured reduction of Young's modulus correlated well with this change of surface microstructure, which can be used as NDE failure/damage assessment tool.
- The 200W ODS coating has coarsening phenomena as well but occurred at much longer thermal cycles. ODS coating strength may still be preserved until formation of dendrite phase.

University Turbine Systems Research

Outlines

- Introduction and Background
- Challenges, Objectives, Benefits of Technology, Research Task Plan

≻ Tasks

- 1. Heat Transfer Characterization
- 2. ODS Coating (AM Assisted)
- 3. ODS Powders Fabrication and Characterization
- 4. Microstructural and Mechanical Properties Characterization
- 5. Detailed Experimental Measurement and Validation

Task 5: Detailed Experimental Measurements and Validation

Conduct HT/P testing at 1100°C demonstrating ~50-70% enhancement of NSECC over smooth channel and pin-fin arrays

- > Further optimization of the NSECC configuration for enhanced cooling performance
- Address additive manufacturing capabilities for production of parts

51

Summary

- Reporting period (10/01/2016-10/31/2017)
- Concept of surface wall jets developed in this research was a good candidate to improve the cooing efficiency for turbine blades.
 - Application of AM-assisted ODS coating for high temperature materials research is presented. Fabrication of ODS coatings and cooling channels were completed and successful. The three phases of work proved the concept that ODS was additively manufacturable.
- Long-term isothermal and cyclic thermo-loading tests of AM-assisted ODS coatings and cooling channels were conducted. Existence of gamma prime phase in AM-assisted ODS coating is confirmed.
- Further research effort to cover research issues such as: Stable oxide formation mechanism – oxidation kinetics of non-equilibrium material system ODS power optimized for AM applications Model-based AM Processes – 3D manufacturing optimization, scale-up route, cost, efficiency, etc.

Thank You!