

HIGH-TEMPERATURE LOW-NO_x COMBUSTOR CONCEPT DEVELOPMENT

JERRY SEITZMAN TIMOTHY LIEUWEN BEN EMERSON EDWIN GOH MATTHEW SIRIGNANO VEDANTH NAIR

CREATING THE NEXT®

Need for Increased Firing T

- Combined cycle thermal efficiency has increased from 47% to 63% over the past 3 decades
 - driven by improvements in materials and cooling methods
 - advanced combustion technologies enabled simultaneous reduction in NOx emissions
- Further increases in $\eta_{thermal}$ will require higher firing temperatures

- goal of $\eta_{thermal} = 65\%$ requires $T_{exit} = 1975 K$

NOx Emissions Challenge

 At elevated temperatures, conventional architectures (DLN, EGR etc.) will fail to meet NO_x emissions standards

– main NO_x mechanism at high T: thermal NO_x

Thermal NO

- Thermal NO formation dependent on temperature, residence time, and O radical concentration $O + N_2 \rightleftharpoons NO + N$ $[NO] \propto [O][N_2]e^{\frac{38,379K}{T}}\tau_{res}$
- To reduce [*NO*],
 - $-\tau_{res}\downarrow$
 - $-T\downarrow$
 - $-\left[O
 ight] \downarrow$
- Approaches:
 - dry, low-NO_x (DLN): reduces T_{max}
 - exhaust-gas recirculation (EGR): reduces [0] and T_{max}
 - staged combustion: reduces [0] and au_{res} at high T

Overall Program Goals

- Georgia Tech
- Combined modeling and experimental program to understand limits and sensitivities of NO_x emissions in gas turbine staged combustion
- Objectives approach
 - determine minimum theoretical NO_x limits for a given firing temperature and residence time
 - reduced-order modeling
 - identify fuel, air injection distributions that can approach theoretical minimum NO_x levels
 - modeling and experiments
 - analyze operational behaviors of such a system
 - modeling and experiments

Work

- Task 1: PMP
- Task 2: Kinetic modeling & optimization
 - 2.1 Fundamental Kinetic Studies
 - 2.2 NOx Optimization Studies
 - 2.3 Constrained NOx Optimization Studies
- Task 3: Experimental characterization of distributed combustion concept
 - 3.1 Facility Development
 - 3.2 Experimental Characterization
- Task 4: Detailed experimental + computational investigation of mixing & heat release distributions
 - 4.1 Large Eddy Simulations (LES)
 - 4.2 Experimental Characterization using High-Speed Laser Diagnostics

Project Timeline

BENT. ZINN

Tasks		Progress	Interdep.	Year	Quarter		ter	Participants	
	Task-1			1	5	6	7	89	
1.1	Project Management and Planning	0							GTAE DOE Low-
1.2	Reporting	0							NOx Research Team
	Task-2			1	5	6	7	89	
2.1	Fundamental Kinetic Studies	\checkmark			$ \neg$	~	1		Prof. Seitzman
2.2	Initial NO Optimization Studies	 Image: A start of the start of	2.1						Prof. German
2.3	Constrained NO Optimization	0	2.2 4.1	U.U					Edwin Goh
	Task-3			1	5	6	7	89	
3.1	Experimental Facility Development	\checkmark	2.2		Y	\sim	(() (Prof. Lieuwen
3.2	Initial Test Matrix & Facility Characteristics	\checkmark	2.1, 2.2						Dr. Ben Emerson
33	Refined Test Matrix & Facility Characteristics	\cap	23						Matthew Sirignano
5.5	Refined Test Matrix & Facility Characteristics		2.5	YY					Vedanth Nair
	Task-4			1	5	6	7	89	
4.1	LES Studies for Subcomponent Geometry	0	2.3						Prof. Menon
4.2	LES Studies for Experimental Rig	0	3.1, 3.2	Ý					Prof. Lieuwen
4.3	Experiments with High Speed Diagnostics		3.2, 3.2						Dr. Andreas Hoffie

✓ : Done
○ : In Progress
▶ : Future

Optimization and Reduced-Order Modeling

Year 1: Minimum NO Modeling

Determine minimum NO emissions from axially-staged combustor under idealized flow conditions

Georgia Tech

- assumes complete (ideal) mixing between fuel and vitiated products before reaction
- for a fixed ϕ_{global} and τ_{global} , design parameters (for fuel injection) are:
 - main burner equivalence ratio φ_{main}
 - secondary injection location

Year 1: Findings

- Performed parameter sweeps with constraint : [CO] ≤ 125% of combustor [CO]_{equilibrium}
- Year 1 findings
 - minimum NO~O(1ppm)
 - improvement increases with firing temperature
 - NO production is less dependent on T_{exit}
 - greater turndown compared to conventional DLN
 - head end (main burner) operating as lean as possible while still rapidly autoigniting secondary stage
- Year 2: additional stages and fuel- dilution are detrimental under idealized conditions

10

Georgia Tech

Chem. Mechanism Dependence Georgia

- Explored impact of uncertainty in rate parameters on minimum NO
- Konnov & UCSD mechanisms predict 2-3× higher NO than GRI
- Still O(1 ppm) significant improvement over conventional approaches

Constrained Optimization – Optimizer

- Design space will grow with more complex configurations and constraints
 - too large for complete parameter sweeps to determine optimum configurations
- ⇒ Need to automate process of exploring parameter space and finding minimums (optimum)
- Wrapped general optimizer around flexible CRN model
- Validated previous axial fuelstaged case with manually obtained minimums
 - significantly reduced runtime (weeks \rightarrow days)

Constrained Optimization – Finite-Rate Mixing

- τ_{global} Main Burner 1-D Laminar **Secondary Stage** Premixed Flame PaSR Fuel + Air **Batch Reactor** Tmain τ_{sec} Secondary Injection 150 15 = 5 ms $au_{\rm res}$ corrected 13 13 15 **PSR NO Limit** corrrected = 0.43 $\phi_{\rm main}$ 0-0 $\phi_{\text{global}} = 0.64$ NO 100 **Batch Reactor NO Limit** 12 **PSR CO Limit** fudd11 CO CO (ppm, 50 **Batch Reactor** Limit 0 10 Failed to ignite Ž 9 0.5 Mixing Time (ms)
- In order to look at more practical design issues, should include effects of non-ideal flow conditions on chemical kinetics
- NO formation is highly dependent on degree of mixing in the reaction zone
 - identify/develop robust model to study effect of mixing rates on NO formation and inform combustor design
- Explored Partially-Stirred Reactor (PaSR) model:
 - 0-D reactor composed of particles (PSRs)
 - mixing model defines rules on mixing effect on particle composition
 - Chemkin implementation requires continuous injection of secondary fluid ⇒ does not properly model burnout

Modeling Finite-rate Mixing

Two approaches to improve upon current PaSR model:

Georgia Tech

Experimental Characterization

Facility Improvements

Experimental Facility

Operational Capabilities

Georgia

Tec

- Main burner provides lean, combustion products
 - equivalence ratios ranging from 0.5 to 0.65 at a constant velocity of 17 m/s
 - test section temperatures ranged from 1650 1810K
- 12 mm premixed methane/air jet
 - straight for 40 diameter prior to exit; premixed 100 diameters prior to exit
 - preheated to temperatures ranging from 420 to 460K
- Facility operated at P = 1atm
 - large residence times used to match NO_x production values at pressure

Quench Section and Gas Analyzer

- Emissions measurements require rapid quenching, spatial mixing before sampling
 - using air-to-water heat-exchanger to quench chemistry at sampling location

- achieved T_{exit} =700 800 K
- Measure NO_x, CO with Horiba PG-350 gas analyzer

Shakedown Testing -Emissions Measurements

- Tested variety of jet equivalence (Φ_{jet}) and momentum (J) ratios to determine effectiveness of quench section at creating uniform sample plane
- Unacceptable NO_x variation in vertical direction (jet penetration)

12-point grid results for single operating condition

5"

[NO] (ppm15%02)

Temperature (K)

4.14	4.37	4.50							
4.01	4.26	4.08							
3.13	3.00	3.63							
3.33	3.49	3.70							
→ 3"									

- Slotted probe designed to sample gas in a vertical line
- Sampling plane (NO_x)_{AV} = 3.83 ppm (NO_x)_{SLOT} = 3.9 ppm
- Slotted probe overcomes changes in vertical NO_x distribution due to changing jet penetration

Year 2 Testing

- Premixed jets were used in the axial stage to validate the operability and to take preliminary NO_X measurements
 - removes influence of fuel-air mixing
 - industry relevant configuration
- Goal: for fixed turbine inlet temperature (T_{exit}) , impact of staging configuration on ΔNO_X , which is the NO_X contribution from the axial stage

- Configuration changed by varying:
 - air split between the main burner and axial stage
 - jet momentum flux ratio (J) and
 - jet equivalence ratio (ϕ_{jet})

Test Matrix

- Three T_{exit} targets
 - 1873, 1915, 1956 K
 - also determines ϕ_{global} based on estimate of heat loss prior to the test section
- Main burner equivalence ratio range $(\phi_{head}) = 0.5 - 0.65$ (7 points)
- J sweep from $2 \rightarrow 5$ (4 points)
- ϕ_{jet} fixed for T_{exit} , ϕ_{head} and J
 - for current configuration, constraints lead to rich staged injection

5.5 5 4.5 ⊕ jet 2.5 2 1.5 0.5 0.525 0.55 0.575 0.6 0.625 0.65 Head

 \Rightarrow Total number of data points = 3x7x4 = 84 points

NO_X vs Global Equivalence Ratio Georgia

- Total NO_X increases with increasing ϕ_{global}
- $\Delta \phi_{global}$ defined as $\phi_{global} - \phi_{head}$ which is a measure of the axial stage contribution

- For low $\Delta \phi_{global}$, low axial stage utilization
 - NO_X increases with higher ϕ_{global}

- For higher $\Delta \phi_{global}$
 - NO_x increase relatively flatter
 - axial stage benefit at higher Φ_{global}

NO_X Contribution from Staging

23

• ΔNO_X is defined as the NO_X contribution from the axial stage

Georgia Tech

- If we hold *J* fixed and increase ϕ_{jet} , we increase stage contribution $(\Delta \phi_{global})$
 - higher stage NO_X as might be expected
- For a fixed axial stage contribution, the ΔNO_X decreases with increase in ϕ_{jet}
 - Why does richer jet produce lower NO_x (in stage and overall)?

Flame Lift Off

- For $\phi_{jet} > 3$, significant lifting of the flame was observed
- Lift-off distance increases as jet becomes richer (increasing ϕ_{jet})
- Hypothesis: increased liftoff allows for more mixing with hot crossflow – allows for more burning at lean conditions than for less rich jets

Planned Work

- Focus on expanded jet parameter space at constant ΔT
 - less head end and target temperature conditions
 - $-\Phi_{jet}$: both rich and lean jets
 - J: high (> 10) and low (< 10) cases</p>
 - requires reducing flow cross-section
 - high J cases will also explore confinement
- Isolate liftoff impact
 - dope methane with 0-12% ethane to reduce ignition times
 - can control degree of lifting
- Diagnostic techniques
 - emissions sampling: NOx levels
 - OH* & CH* chemiluminescence, Mie scattering: jet fluid mixture fraction, equivalence ratio of combustion, & jet trajectory
 - high-speed PIV and PLIF (detailed flow/flame interaction)

LES Studies

Previous Work – Current Status Georgia

- Previous Work
 - adaptive mesh refinement (AMR) approach was validated by comparison to experimental results for hydrogen JICF flames¹
 - preliminary non-premixed, reacting CH₄ baseline case without AMR was examined
- Current Status
 - premixed JICF studies with AMR motivated by GT experiments
 - non-reacting JICF study of planned GT configuration

¹Muralidaran and Menon, AIAA SciTech, 2014

Premixed Study

Reacting, premixed methane jet in vitiated cross flow

- configuration based on GT experimental conditions
- simplified geometry, square jet with D = 12mm, J=3.7
- 1 step-5 species Westbrook-Dryer¹ mechanism unrealistic but fast

Time-Averaged Flow Field Georgia Tech <U>| [m/s]28.0 < T > [K]21.0 -2441.6 - 14.0 - 1945.9 - 7.01 -1450.3 0.00781 - 954.56 458.87 y=10⁻⁴m Simulation predicts flame **Recirculation zones**

- Simulation predicts flame anchoring on the windward and leeward-side
 - experiment, leeward-side only
- Discrepancy due to
 - 1-step chemistry
 - thinner upstream boundary layer
 - square, plug flow jet BC
- Time averaged velocity magnitude overlaid with streamlines
- Leading boundary layer separation and recirculation zones can form potential regions for flame anchoring

Autoignition Sequence

Georgia Tech

- Auto-ignition starts downstream in leeward-side recirculation
- Flame moves upstream at apparent speed of O(100 m/s)
 > S_{L,jet}=O(1 m/s)
- Flame eventually propagates toward windward shear layer and envelopes entire jet

Moving Toward Experimental Geometry

- Geometry and conditions based on planned GT experimental configuration
 - includes finite length (2.5D) round injector tube and upstream BC, utilizing the novel AMR Cutcell¹ method

Georgia Tech

- Equilibrium products for vitiated cross-flow
- Non-reacting study to investigate flow field and mixing

JICF Vortex System

Flow Field

- Flame-anchoring is expected to take place outside high strain rate regions $S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right); |S| = \sqrt{2S_{ij}S_{ij}};$
- Auto-ignition studies needed with accurate, multistep mechanism

- Interaction of cross flow with jet conditions

 influence of windward side pressure rise
 on fuel tube: reduced velocity
 - BL separation and recirculation on windward side of fuel tube

48.5 32.4 16.3 0.219

Future plans

- Focus on premixed JICF studies
 - pick 2-3 cases with range of flame dynamics/stabilization
- Detailed plan
 - auto-ignition to be revisited using more detailed kinetics (e.g., 13 specie CH₄-air mechanism)
 - inflow turbulence and resolution sensitivity will be assessed by increasing levels of near-wall refinement
 - Zeldovich and "prompt" NO kinetics model to be included once flame anchoring and auto-ignition issues are resolved
 - number of simulation cases limited by resources available within GT; therefore, choice of cases will be down selected after more assessment of experimental cases

Brief Year 2 Summary

- Reduced-order modeling
 - minimum (ideal) NOx for staging: 0 (1 ppm) and similar for different chemical mechanisms and jet mixtures
 - automated optimizer with new PaSR models to explore impact of finite mixing – can use inputs from LES studies
- Experiments
 - demonstrated axial staging improvements in total NO_X for premixed cases
 - NOx advantages of staging improve with firing temperature as expected from ROM results
 - NO_x production in JICF staging dependent on mixing, strongly coupled to flame lifting new experiments planned to focus on mixing limitations
- LES studies
 - initial LES examination of experimental conditions show expected flow features and suggest importance of near-field strain and "autoignition" type behavior

35

including more appropriate kinetics for detailed studies

Questions?

36

BENT.