Turbulent Flame Propagation Modeling in Premixed/Stratified Combustors

Application to Flame Flashback

Venkat Raman
University of Michigan

Noel Clemens
The University of Texas at Austin
Background

• **Flashback in lean premixed combustor**
 - Nature of premixed flame, lead to severe damage
 - Transient and difficult to predict
 - Time scales of millisecond
 - Boundary layer flashback
 - Low momentum streaks
 - Reaction vs. near-wall quenching

• **Challenges in practical combustion device**
 - Complex geometry
 - Extension to stratified flame and even partially premixed

(Lewis and Von Elbe, 1943)
Project Objectives

• **Goal:** Understand flame structure and propagation in high pressure premixed/stratified mixtures
 ➡ Lean combustion in high strain conditions
 ➡ Stratified combustion
 ➡ Flame flashback in high hydrogen-content combustion
 ➡ Staged combustion with hydrogen as fuel

• **Approach**
 ➡ DNS/LES based modeling flames
 ➡ Experiments of low and high pressure flames in stratified environments
 ➡ Including flashback
Outline

• Experimental studies of flashback
 ➡ UT swirl burner
 ➡ Low and high pressure test cases
 ➡ Summary of findings

• Computational modeling of premixed and stratified flames
 ➡ Solver development
 ➡ Flamelet-based models
 ➡ Validation test cases
 ➡ Summary of findings
Stratified Flames and Flashback

- Goal is to identify physical structure of flashback
- UT Swirl Burner with Nozzle-based Injection
Demonstration of Stratification: Nonreacting Methane-air

- Global equivalence ratio: 0.63
- Reh = 6100
- Average axial velocity: 2.5 m/s
- Non-reacting flow with acetone-seeded air through the fuel-nozzles
Equivalence ratio distribution snapshots

- Flow was found to be stratified in an average sense
- Occasional presence of fuel-rich mixtures found close to the center-body
- Swirl and turbulence in the mixing tube may bring reactive pre-mixture close to the center-body boundary layer

Histograms compare instantaneous equiv. ratio distribution in the inner half ($r<6\text{mm}$) to the outer half ($r>6\text{mm}$)
Propagation along the inner boundary layer

- Flame surface identified by evaporation of PIV seed particles (white region in the axial velocity map)
- Bright structures in the luminosity impose strong deflection of the approach flow
- Flame surface curvature is higher than the fully premixed flashback at same Re
Acetone PLIF snapshots during Flashback

- Instantaneous acetone PLIF signal maps were obtained for the reacting cases.
- Flame curvature was found to be enhanced by the local distribution of the equivalence ratio.
- Regions of positive and negative flame surface curvature are shown (in red circles).
Effect of hydrogen-enrichment: Luminosity images

- Early stage: Flame propagates along inner wall for CH4 and H2 early stage.
- Final stage: At later time H2 flame propagates on outer wall.
Propagation along the outer wall

- Flame starts propagating along the center-body boundary layer,
 - Switches to the outer wall after a few milliseconds

- Simultaneous Mie scattering images show the thin acute-tipped flame-strand propagating along the outer wall

- The outer wall propagation continues until the flame stabilizes itself on the fuel ports
Elevated pressure flashback: Premixed vs Stratified

- Premixed flashback at elevated pressures exhibit very small radial spread,
- Stratified flame flashback stops at an intermediate location in the mixing tube
- The flame brush is more wrinkled and exhibits large radial spread reaching up to the outer wall

Flow parameters
- Fuel: Methane
- Average axial velocity: 2.5 m/s
- Pressure: 3 atm
Summary of Findings

• A methodology for initiating flashback was developed
 ➡ Advanced laser diagnostics used

• Stratification leads to arresting of flame flashback
 ➡ As expected
 ➡ But, hydrogen seems to get around this solution

• At elevated pressures, flashback behavior is similar

• Radial spread of flame brush larger for stratified flame
 ➡ Flame propagation through regions with equivalence ratios outside flammability limit
Numerical Setup

- Variable density low Mach solver - umFlameletFoam
 - OpenFOAM based
 - Low Mach solver
 - Minimize dissipation
- 10M hexahedral-dominant mesh
 - Local refinement at swirler
- Run for 10,000 core hours on 1008 processors
Numerical details

- 9.5 million control volumes with clustering near the vanes
- Block-structured mesh
 - save computational time
 - reduce numerical dissipation
Boundary conditions

• Role of outlet box
 ➡ Drive vortices outside the chamber
 ➡ Dissipate the vortices

• Fuel Inlet
 ➡ Dirichlet BC, fixed in time
 ➡ Mass flow rate matches experiments

• Turbulent velocity inlet
 ➡ From auxiliary annulus simulation
Fuel Distribution

- Nozzle injection causes non-uniform fuel distribution in the radial direction

ACETONE PLIF

HISTOGRAM OF FUEL CONCENTRATION

- Richer mixtures closer to outer wall
Non-reacting Case Study

- Fuel stream replaced by acetone seeded air
- PLIF measurement of equivalence ratio

Operating Condition
Temperature: 300K
Pressure: 1 atm
Global equivalence ratio: 0.5
Bulk velocity: 2.5 m/s
Non-reacting Case Study

- Stratification effects inside mixing tube:
 - Fuel rich near outer wall
 - Small structure slightly unresolved

- Velocity measurement:
 - Dissipates slightly faster than measurement
 - Overall, predict reasonable well for velocity field

- Equivalence Ratio ϕ
 - $x<18.7\text{mm}$
 - $x>18.7\text{mm}$

- Probability Density Mean
 - $x<18.6\text{mm}$, CFD
 - $x>18.6\text{mm}$, CFD

- Probability Density Variance
 - $x<18.6\text{mm}$, PLIF
 - $x>18.6\text{mm}$, PLIF

- Probability Density of x (mm) and U_z (m/s)
 - $x<18.7\text{mm}$
 - $x>18.7\text{mm}$

- CFD vs PIV

- Equivalence Ratio ϕ vs x (mm) and U_z (m/s)
Modeling Approach

• Based on large eddy simulation (LES)/flamelet approach

• Stratified mixtures
 ➡ Mixture fraction and progress variable required
 ➡ Flamelet progress variable (FPV) method

• Heat loss
 ➡ Additional coordinate for enthalpy defect
Heat Loss Modeling

- Introducing heat loss into flamelet
 - Modify flamelet equations to account for heat loss
 \[\frac{\rho C_p \chi}{2} \frac{\partial^2 T}{\partial Z^2} = \dot{\omega}_h - \lambda \frac{T(Z) - T_w}{\delta} \]
 - Fourier heat loss term, varied based on \(\delta \)

- Transport equation of enthalpy defect
 \[H = h_{tot} - h_{tot,Ad} \]
 \[\frac{\partial \tilde{\rho} \tilde{H}}{\partial t} + \nabla \cdot (\tilde{\rho} \tilde{v} \tilde{H}) = \nabla \cdot \left(\frac{\mu_T}{Pr} \nabla \tilde{H} \right) + \nabla \cdot (\lambda \nabla T) - \nabla \cdot (\lambda_{Ad} \nabla T_{Ad}) \]
Adiabatic Reacting Case Study

Chemiluminescence

CFD

Eq. Ratio

2.000e+00

1.5

1

0.5

-0.000e+00
Non-adiabatic Reacting Case Study

Adiabatic
(1/50 real time speed)

Non-adiabatic
(1/50 real time speed)
Non-adiabatic Reacting Case Study

Chemiluminescence
Adiabatic
Non-adiabatic
Lean Premixed Combustion at High Pressures

- **MILD combustion conditions**
 - High recirculation rate to maintain combustion

- **Asymmetric nozzles**
 - Recirculation predominantly below the nozzles
 - Very high jet velocities

- **Broad reaction zones**
 - Strain influenced
 - Large heat loss to walls

- **Methane or hydrogen as fuel**

- **Experimental data from DLR**
DLR 3-jet Case: Numerical details

- 8 M grid points in the flow DNS limit
- Dirichlet BC for velocity and progress variable
- Extended pipes at the inlet to generate turbulence
- Inlet velocity 120 m/s
DLR 3-Jet Case - Heat Loss Effect

• Wall temperature has significant effect on flow structure
 ➡ Higher heat loss leads to smaller recirculation zone

• Simulations capture flow structure reasonably well
 ➡ Lack of adequate experimental data
 ➡ Some issues with measurements noted
Validation - DLR 1-Jet Case

- Modification of the 3-Jet case

 - Single nozzle inflow

 - Preheat premixed methane-air:
 - Operating pressure: 1atm
 - Jet bulk velocity: 90m/s
 - Wall temp: 1000K
 - Equivalence ratio: 0.67
Effect of Strain

- 1D unstrained model based tabulation
 - Overpredicts flame speeds even with heat loss
 - Combustion pushed towards thin reaction zone
- Approach: Incorporate strain effects
 - Consider opposed premixed flames
- Strain effects can lead to varying mappings

Obtained from B. Coriton, M. Smooke, A. Gomez (2016)
Counterflow Premixed Flame Tabulation

- Flow solution known to have hysteresis effect

- Two control variables
 - Mass flow (strain)
 - Product temperature (enthalpy)

Obtained from M. de Joannon a, A. Matarazzo b, P. Sabia b, A. Cavaliere (2007)
Comparisons with Experimental Data

- New flameout description highly accurate
 - Captures temperature profiles throughout combustor
Summary of Findings

• LES with modified flamelet closures
 ➡ Accurately predicts flashback processes
 ➡ Captures MILD combustion processes

• Solver plays a key role
 ➡ Non-dissipative numerics key to recovering turbulence characteristics

• Strain rate seen as key parameter for modeling low equivalence ratio MILD combustion devices
 ➡ Non-adiabatic formulations necessary where heat loss to walls is important
Products of Research

• Experimental database on boundary layer flashback
 ➡ Variety of fuels, equivalence ratios, pressures
 ➡ Time-series of velocity and flame front data

• General purpose LES solver for premixed and stratified flames
 ➡ OpenFOAM code base
 ➡ All solvers available cooperative release
 - Already used by 6 universities and industrial partners
 - Models included in low-Mach number version of solvers

• 4 PhDs (2 still in progress) + several journal articles