Turbulent Flame Propagation Modeling in Premixed/Stratified Combustors

Application to Flame Flashback

Venkat Raman

University of Michigan

Noel Clemens

The University of Texas at Austin

Background

• Flashback in lean premixed combustor

- Nature of premixed flame, lead to severe damage
- Transient and difficult to predict
 - Time scales of millisecond
- Boundary layer flashback
 - Low momentum streaks
 - Reaction vs. near-wall quenching
- Challenges in practical combustion device
 - Complex geometry
 - Extension to stratified flame and even partially premixed

(Lewis and Von Elbe, 1943

Project Objectives

- Goal: Understand flame structure and propagation in high pressure premixed/stratified mixtures
 - Lean combustion in high strain conditions
 - Stratified combustion
 - Flame flashback in high hydrogen-content combustion
 - Staged combustion with hydrogen as fuel

• Approach

- DNS/LES based modeling flames
- Experiments of low and high pressure flames in stratified environments
 - Including flashback

Outline

• Experimental studies of flashback

- → UT swirl burner
- Low and high pressure test cases
- Summary of findings

Computational modeling of premixed and stratified flames

- Solver development
- Flamelet-based models
- Validation test cases
- Summary of findings

Stratified Flames and Flashback

- Goal is to identify physical structure of flashback
- UT Swirl Burner with Nozzle-based Injection

Demonstration of Stratification: Nonreacting Methane-air

- Global equivalence ratio: 0.63
- Reh = 6100
- Average axial velocity: 2.5 m/s
- Non-reacting flow with acetoneseeded air through the fuel-nozzles

Equivalence ratio distribution snapshots

Histograms compare instantaneous equiv. ratio distribution in the inner half (r<6mm) to the outer half (r>6mm)

- Flow was found to be stratified in an average sense
- Occasional presence of fuel-rich mixtures found close to the center-body
- Swirl and turbulence in the mixing tube may bring reactive pre-mixture close to the center-body boundary layer

Propagation along the inner boundary layer

Luminosity image Axial velocity map

- Flame surface identified by evaporation of PIV seed particles (white region in the axial velocity map)
- Bright structures in the luminosity impose strong deflection of the approach flow
- Flame surface curvature is higher than the fully premixed flashback at same Re

Acetone PLIF snapshots during Flashback

Normalized PLIF signal map during flashback

- Instantaneous acetone PLIF signal maps were obtained for the reacting cases
- Flame curvature was found to be enhanced by the local distribution of the equivalence ratio
- Regions of positive and negative flame surface curvature are shown (in red circles)

Effect of hydrogen-enrichment: Luminosity images

Propagation along the outer wall

Luminosity

Particle image

Flame starts propagating along the center-body boundary layer,

- Switches to the outer wall after a few milliseconds
- Simultaneous Mie scattering images show the thin acutetipped flame-strand propagating along the outer wall
- The outer wall propagation continues until the flame stabilizes itself on the fuel ports

Elevated pressure flashback: Premixed vs Stratified

t = 19.75 ma

Stratified

- Premixed flashback at elevated pressures exhibit very small radial spread,
- Stratified flame flashback stops at an intermediate location in the mixing tube
- The flame brush is more wrinkled and exhibits large radial spread reaching up to the outer wall

Summary of Findings

- A methodology for initiating flashback was developed
 - Advanced laser diagnostics used
- Stratification leads to arresting of flame flashback
 - ➡ As expected
 - But, hydrogen seems to get around this solution
- At elevated pressures, flashback behavior is similar
- Radial spread of flame brush larger for stratified flame
 - Flame propagation through regions with equivalence ratios outside flammability limit

Numerical Setup

- Variable density low Mach solver umFlameletFoam
 - OpenFOAM based
 - Low Mach solver
 - Minimize dissipation
- 10M hexahedral-dominant mesh
 - Local refinement at swirler
- Run for 10,000 core hours on 1008 processors

Numerical details

- 9.5 million control volumes with clustering near the vanes
- Block-structured mesh
 - save computational time
 - reduce numerical dissipation

Inlet Air

Boundary conditions

• Role of outlet box

- Drive vortices outside the chamber
- Dissipate the vortices

• Fuel Inlet

- Dirichlet BC, fixed in time
- Mass flow rate matches experiments
- Turbulent velocity inlet
 - From auxiliary annulus simulation

Fuel Distribution

Nozzle injection causes non-uniform fuel distribution in the radial direction

• Richer mixtures closer to outer wall

Non-reacting Case Study

- Fuel stream replaced by acetone seeded air
- PLIF measurement of equivalence ratio

Operating Condition Temperature : 300K Pressure : 1atm Global equivalence ratio: 0.5 Bulk velocity : 2.5m/s

Modeling Approach

- Based on large eddy simulation(LES)/flamelet approach
- Stratified mixtures
 - Mixture fraction and progress variable required

Flamelet progress variable (FPV) method

Additional coordinate for enthalpy defect

Heat Loss Modeling

• Introducing heat loss into flamelet

→ Modify flamelet equations to account for heat loss $\rho C_p \chi \partial^2 T$, $T(Z) - T_w$

$$\frac{\partial p\chi}{2}\frac{\partial T}{\partial Z^2} = \dot{\omega}_h - \lambda \frac{T(Z) - T}{\delta}$$

- Fourier heat loss term, varied based on δ
- Transport equation of enthalpy defect

$$\begin{aligned} H &= h_{tot} - h_{tot,Ad} \\ \frac{\partial \bar{\rho}\tilde{H}}{\partial t} + \nabla \cdot \left(\bar{\rho}\tilde{v}\tilde{H}\right) = \nabla \cdot \left(\frac{\mu_T}{Pr}\nabla\tilde{H}\right) + \nabla \cdot \left(\lambda\nabla T\right) - \nabla \cdot \left(\lambda_{Ad}\nabla T_{Ad}\right) \end{aligned}$$

Adiabatic Reacting Case Study

Non-adiabatic Reacting Case Study

Chemiluminiescence

Adiabatic

Non-adiabatic

Lean Premixed Combustion at High Pressures

MILD combustion conditions

- High recirculation rate to maintain combustion
- Asymmetric nozzles
 - Recirculation predominantly t the nozzles
 - Very high jet velocities
- Broad reaction zones
 - Strain influenced
 - Large heat loss to walls
- Methane or hydrogen as fuel
- Experimental data from DLR

PLR 3-jet Case: Numerical details

- 8 M grid points in the flow DNS limit
- Dirichlet BC for velocity and progress variable
- Extended pipes at the inlet to generate turbulence
- Inlet velocity 120 m/s

PLR 3-Jet Case - Heat Loss Effect

- Wall temperature has significant effect on flow structure
 - Higher heat loss leads to smaller recirculation zone
- Simulations capture flow structure reasonably well
 - Lack of adequate experimental data
 - Some issues with measurements noted

Validation - DLR 1-Jet Case

• Modification of the 3-Jet case

Effect of Strain

• 1D unstrained model based tabulation

- Overpredicts flame speeds even with heat loss
- Combustion pushed towards thin reaction zone
- Approach: Incorporate strain effects
 - Consider opposed premixed flames
- Strain effects can lead to varying mappings

Obtained from B. Coriton, M. Smooke, A. Gomez (2016)

Counterflow Premixed Flame Tabulation

Obtained from M. de Joannon a, A. Matarazzo b, P. Sabia b, A. Cavaliere (2007)

Comparisons with Experimental Data

• New flameout description highly accurate

Captures temperature profiles throughout combustor

Summary of Findings

• LES with modified flamelet closures

- Accurately predicts flashback processes
- Captures MILD combustion processes

• Solver plays a key role

- Non-dissipative numerics key to recovering turbulence characteristics
- Strain rate seen as key parameter for modeling low equivalence ratio MILD combustion devices
 - Non-adiabatic formulations necessary where heat loss to walls is important

Products of Research

- Experimental database on boundary layer flashback
 - ➡ Variety of fuels, equivalence ratios, pressures
 - Time-series of velocity and flame front data
- General purpose LES solver for premixed and stratified flames
 - OpenFOAM code base
 - ➡ All solvers available cooperative release
 - Already used by 6 universities and industrial partners
 - Models included in low-Mach number version of solvers
- 4 PhDs (2 still in progress) + several journal articles