High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends With and Without Impurities

Eric L. Petersen

Department of Mechanical Engineering Texas A&M University

2017 University Turbine Systems Research Project Review Meeting Pittsburgh, PA 1-2 November, 2017

AM

Project Began in October, 2013

Project Highlights:

1. Duration: Oct. 1, 2013 – Sept. 30, 2017

2. DOE NETL Award **DE-FE0011778**

3. Budget: \$498,382 DOE + \$124,595 Cost Share

4. Principal Investigator: Dr. Eric L. Petersen

This Project Addressed Several Problems for HHC Fuels

- Improve NOx kinetics for High-Hydrogen Fuels at Engine Conditions
- 2. Effect of **Contaminant Species** on Ignition and Flame Speed
- 3. Impact of **Diluents** on Ignition Kinetics and Flame Speeds
- 4. Data on **Turbulent Flame Speeds** at Engine Pressures

There Were Five Main Work Tasks for the Project

Work Tasks:

Task 1 – Project Management and Program Planning

Task 2 – Turbulent Flame Speed Measurements at Atmospheric Pressure

Task 3 – Experiments and Kinetics of Syngas Blends with Impurities

Task 4 – Design and Construction of a High-Pressure Turbulent Flame Speed Facility

Task 5 – High-Pressure Turbulent Flame Speed Measurements

6 Journal Publications from Project to Date

Journal Publications

- 1) O. Mathieu, C. Mulvihill, and E. L. Petersen, "Shock-Tube Water Time-Histories and Ignition Delay Time Measurements for H₂S Near Atmospheric Pressure," *Proceedings of the Combustion Institute*, Vol. 36, 2017, pp. 4019-4027.
- O. Mathieu, B. Giri, A. R. Agard, T. N. Adams, J. D. Mertens, and E. L. Petersen, "Nitromethane Ignition Behind Reflected Shock Waves: Experimental and Numerical Study," *Fuel*, Vol. 182, 2016, pp. 597-612.
- 3) N. Donohoe, K. A. Heufer, C. J. Aul, E. L. Petersen, G. Bourque, R. Gordon, and H. J. Curran, "Influence of Steam Dilution on the Ignition of Hydrogen, Syngas and Natural Gas Blends at Elevated Pressures," *Combustion and Flame*, Vol. 162, 2015, pp. 1126-1135.
- 4) O. Mathieu and E. L. Petersen, "Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry," *Combustion and Flame*, Vol. 162, 2015, pp. 554-570.
- 5) S. Ravi, T. G. Sikes, A. Morones, C. L. Keesee, and E. L. Petersen, "Comparative Study on the Laminar Flame Speed Enhancement of Methane with Ethane and Ethylene Addition," *Proceedings of the Combustion Institute*, Vol. 35, Issue 1, 2015, pp. 679-686.
- 6) O. Mathieu, J. W. Hargis, A. Camou, C. Mulvihill, and E. L. Petersen, "Ignition Delay Time Measurements Behind Reflected Shock Waves for a Representative Coal-Derived Syngas With and Without NH₃ and H₂S Impurities," *Proceedings of the Combustion Institute*, Vol. 35, Issue 3, 2015, pp. 3143-3150.

Conference Publications

In Preparation

11 Conference Papers to Date

2 Journal Papers

<u>Task 4</u> – Design and Construction of a Turbulent Flame Speed Facility

AM

New Facility Designed and Built at TAMU

1. Detailed Design and Structural Analysis

2. Fabrication of Vessel Components

3. Installation of Vessel

4. Characterization of Flow Conditions

Combustion regimes

Recent data cover a wide range of flamelet regions

Targets for **New Turbulent Flame Bomb**

1. High-pressure / temperature data are limited

2. Refined diagnostics for local stretch are needed

3. Higher levels of well-characterized turbulence are desired

Facility survey

Few bombs with high pressure, temperature and u' capabilities

New turbulent flame speed bomb

New layout optimized available space and facilities

Mechanical Design

The vessel

Familiar design with improvements

Built forged SS seamless rings

Max. pressure 1500 psi

Max. temp 400 K (o-ring limited)

Vessel dimensions

Window aperture-to-ID ratio = 36%

Breech

Strong, versatile, and generous access

Stirring assembly

Windows

Two orthogonal lines of sight. Aperture $\emptyset = 5$ in

Stirring port plug for quiescent experiments

Designed for 3000 psi

Low-stress window mount. Easy assembly

Application	Thread	Number	Q, corrected	Fastener	Pressure,	Total	Load per	Fastener,	Safety
		of	engagement	strength,		load,	fastener,	load	factor
		fasteners	length,					capacity,	
			in	ksi	psi	lb	lb	lb	
Window clamp	8-32 UNC 2A	8	0.137	180	15	416	52	2,522	48.5
Housing cover	1/4-20 UNC 2A	12	0.182	170	3,000	9,425	785	5,410	6.9
Side port	5/16-18 UNC 2A	6	0.238	170	3,000	4,455	742	8,913	12.0
Window cell	9/16-12 UNC 2A	12	0.442	170	3,000	107,355	8,946	30,931	3.5
Spark plug	1/2-14 NPT	1		110	3,000	1,663	1,663	51,277	30.8
Expansion joint	7/8-9 UNC 2A	12	0.705	170	3,000	235,619	19,635	78,495	4.0
End cap	1-8 UNC 2A	12	0.802	170	3,000	461,814	38,485	102,977	2.7
Bearing housing	2 1/4 -10 UNS 2A	1	1.853	110	3,000	2,356	2,356	400,311	169.9
Retaining ring	10-3 BUTT 3A	1	0.1439	63.5 [†]	3,000	235,619	235,619	3,928,462	16.7

Hydrostatic test

Hydrostatic test successful and resulted in improved window design

Hydrostatically Tested to 2,000 psi (1,500 psi design P) by FESCO, Ltd.

Turbulence Generation

 $\tilde{u}(\mathbf{x},t) = U(\mathbf{x}) + u'(\mathbf{x},t)$

Background

Previous flame bomb at TAMU

P_{max} 1 atm ID 305 mm (12") L 356 mm (14")

U _{rms}	1.5 m/s		
L _T	27 mm		
τ_{ϵ}	55 ms		

Linear dependence of u' and shaft rpm

Original Fan Design was Not Very Good at Producing Fluctuations

Effect of fan size and turbulence

Larger fans are better stirrers. $r_{eff} \approx 0.18 r_{fan}$

Effect of fan quantity

More fans, more vigorous u'_{rms}

Custom impeller prototypes

Fan Designs Could be Easily 3D Printed

Stock leaf blower impeller

Toro 127-7092, magnesium impeller

LDV characterization

Plug impeller LDV results

Anisotropic turbulence

rpm	2000	4000	6000
Mean velocity C	0.1508	0.4893	1.0823
Turbulence fluctuation c' _{rms}	1.9907	4.1157	6.2090
Inverse intensity C/c' _{rms}	0.0757	0.1189	0.1743
Isotropy u'/w'	0.7600	0.7553	0.7491
Homogeneity std. dev.	0.0827	0.0856	0.0842

 $r_{eff} = 10.07 \text{ mm}$

Leaf blower impeller LDV results

The ratio of u'/w' can be influenced

						_
rpm	2000	4000	6000	8000	8000 wall	
Mean velocity C	0.2642	0.5646	1.1117	1.1475	1.7777	
Turbulence fluctuation c'_{rms}	1.4026	2.7936	4.221	5.5316	5.3769	
Inverse intensity C/c' _{rms}	0.1883	0.2021	0.2634	0.2074	0.3306	
Isotropy u'/ w'	1.2719	1.2485	1.2786	1.2366	1.0157	
Homogeneity std. dev.	0.0957	0.0974	0.1087	0.0971	0.1002	

r_{eff} = 6.6 mm

Open gap

Close clearance

<u>Task 5</u> – High-Pressure Turbulent Flame Speed Measurements

Task 5 – High-Pressure Turbulence

High-Pressure Experiments Were Performed for Selected Syngas Blends

- Hydrogen Characterization Tests, Laminar and Turbulent
- Identify Syngas Blends for Study with Turbulence Generation
- Perform Experiments at Elevated Pressures (10 bar)
- Collect Database of Images and Flame Growth Measurements

Optical access

Schlieren optical diagnostics enabled

Validation Experiments Performed for H₂

H₂-Air, 10 bar, no fans

H_2 - O_2 -He, 10 bar, no fans

Photron 25000 fps Start Date : 2017/8/22	FASTCAM SA1.1 mo 1/1000000 sec frame : 1095 Time : 21:16	448 x 464 +00:00:00.04380
		-

Laminar flame speed validation

Excellent reproducibility and repeatability

 H_2 laminar flame speed, 1 atm

Nitrogen Oxides formation

Unintended wet NOx scrubber

Combustion products immediately after ignition

5 bar H_2 -air

10 bar H₂-air

10 bar H₂-air

10 bar H_2 - O_2 +6He

Turbulent experiment matrix

Syngas H_2 :CO (50:50), $\Phi = 0.5$, ambient temperature

	$S_{L,u}^{\circ}$	$\delta_{_L}$		Re _T	
	m/s	μm	1.4 m/s	2.8 m/s	5.5 m/s ← U′
1 bar	0.269	649	1621	3242	6369
5 bar	0.130	195	8116	16,231	
10 bar	0.081	142	16,185	32,370	

1 bar, 8000 rpm

2 bar, 8000 rpm

Photron 5000 fps Start Date : 2017/8/22	FASTCAM SA1.1 mo 1/1000000 sec frame : 1049 Time : 16:00	448 x 464 +00:00:00.04196

Turbulent flame speed: 1 bar

5 bar, 2000 rpm

5 bar, 4000 rpm

Photron 25000 fps Start Date : 2017/7/25	FASTCAM SA1.1 mo 1/1000000 sec frame : 1124 Time : 21:33	448 x 464 +00:00:00.04496

4000 rpm

10 bar, 4000 rpm

Turbulent flame speed radius

A M

u' is the most determinant factor

Displacement velocity of the burned gas

CH₄, Φ =0.9 at 1 & 10 bar H₂, Φ =0.5 at 1 & 10 bar

Figure reproduced from (Kobayashi, Tamura et al. 1996)

- A new bomb was designed and tested
- u'_{rms} increased from 1.5 to 5.5 m/s
- 10-bar experiments were achieved
- Maximum steady state temperature raised to 400 K
- Blast room was remodeled
- New shared schilieren was implemented
- Results for CO/H₂ mixtures obtained

TAMU Work is a Team Effort of Several People

Dr. Olivier Mathieu

Anibal Morones

Charles Keesee

Clayton Mulvihill

Five Main Work Tasks for the Project are Completed

Task 1 – Project Management and Program Planning

Task 2 – Turbulent Flame Speed Measurements at Atmospheric Pressure

Task 3 – Experiments and Kinetics of Syngas Blends with Impurities

Task 4 – Design and Construction of a High-Pressure Turbulent Flame Speed Facility

Task 5 – High-Pressure Turbulent Flame Speed Measurements

LDV turbulence measurements

Main features of flow ratified with LDV

Alpha, PIV

Time-averaged flow field

Alpha, LDV

Time-averaged flow field

Impeller "B" 2000 rmp

$$\bar{u} = -0.41$$

 $\bar{w} = -0.94$
 $u_{rms} = 3.11$
 $w_{rms} = 3.62$
 $|sotropy = 0.8619$
 $h_x = 1.02$, $h_y = 1.01$

•у Average velocity XZ Cross section at Y =22mm 50 40 30 20 Vertical (Z) Axis [mm] 0, 0, 0 -30 -40 -50 -50 -40 -30 -20 -10 0 10 20 30 40 50

Power consumption

The load was too great for some impellers

