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Although a promising technology, several key issues must be addressed before rotary 
detonation engines can be implemented for power generation, including:

1) Measuring and controlling CO and NOx emissions
2) Reactant injection and reducing reverse flow
3) High local heat fluxes within the combustor
4) Quantifying actual pressure gain
5) Fuel-oxidizer mixing 
6) Detonation-mixture inhomogeneity interaction

In a summary of the extensive RDE work completed at the Lavrent’ev Institute of 
Hydrodynamics, Bykovskii et al. (2006) concluded that “[t]he governing factor in obtaining 
an effective continuous detonation regime belongs to mixing in the region of transverse 
detonation wave propagation.” 
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Rotary detonation engine issues and the importance of inhomogeneity
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RDE schematics and geometric influences on mixing 
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RDE illustration

(Nordeen, 2013)

• RDEs are especially prone to spatial variations in mixture concentration due to:
– Short mixing times (0.05 to 1 msec), since the combustor mixture region must refill 

before the detonation wave passes the injector holes again 
– Time-varying reactant flow rates due to changes in pressure downstream of the 

injection holes as the detonation wave passes
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Previous studies on detonation-inhomogeneity interaction 

Author Year Experimental 
or Numerical

Perpendicular
or Parallel Mixture Description

Mikhalkin 1996 N N/A C2H4-O2
CH4-O2

Regions of poorly mixed gases have a similar effect as 
inert diluents on detonation properties

Kuznetsov 1998 E ═ H2-Air Strong mixture concentration gradients dampen 
detonation propagation

Brophy 2006 E ⊥ C2H4-Air Fuel distribution effects in a PDE

Bykovskii 2006 E ⊥ Various 
mixtures

Summary of RDE experiments highlighted the effects 
of poor mixing on operation

Ishii 2007 E ⊥ H2-O2
H2-O2-N2

Deflection of detonation wave, skewing of cell 
structure and changes in detonation velocity 

Kessler 2012 N ═ CH4-Air Shock wave-combustion zone decoupling led to 
turbulent deflagration

Ettner 2013 N ⊥ H2-O2
Concentration gradient effected on detonation cell 
shape, instability, and pressure distribution

Nordeen 2013 N ⊥ H2-Air Simulation of an RDE with variable mixedness

Driscoll 2015 N N/A H2-Air Simulation of mixing in a RDE
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• Majority of experimental studies relied on diffusion to produce concentration gradients

• For example, Ishii (2007) showed that concentration gradients can “skew” the leading 
detonation wave, resulting in irregular cell structures and a reduction in wave velocity

• Other studies have shown that inhomogeneity can result in shock waves decoupling from 
the combustion zone (resulting in turbulent deflagrations), a reduction or an increase in 
peak detonation pressure, and changes in mixture failure limits  

direction of
detonation 
propagation

Previous studies on detonation-inhomogeneity interaction 

(Ishii, 2007)

direction of 
Φ gradient
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In order to improve current rotary detonation engine designs to produce practical 
devices, the effect of concentration inhomogeneity on detonation properties will 
be determined.

The main objectives of this project are to:

1) determine the degree of fuel-oxidizer mixture concentration inhomogeneity in 
a rotary detonation engine

2) experimentally study the effects of inhomogeneity on detonation wave quality 
and stability (i.e., wave speed, planar vs non-planar, wave height, etc.)

3) perform a parametric study to better understand the relationships between 
combustor geometries and fuel/oxidizer injection.

Project Objectives
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poorly-mixed

• In order to increase measurement access, an “unwrapped” RDE will be tested in this study:

• Two configurations (parallel and perpendicular) will also be tested

General technical approach

Unwrap
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Overview of detonation facility

• Image shows all major components of the test facility

• Some components removed for clarity
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Detonation channel description

• Parallel test configuration shown

• Channel comprised of three main sections

• All sections bolted together to allow for geometry changes 
(no welds)

• Cross-section dimensions:  0.75” by 3.5”

• Overall length:  ~11 ft.

• Sections are re-arranged to operate the test facility in 
different configurations
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Detonation channel description
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Fuel / oxidizer inlet sectionDetonation propagation & outlet section

Optically-accessible section Fuel /oxidizer flow
direction

Detonation propagation 
direction

• Detonation initiated in DDT section

• Wave enters channel and expands along 
incline to prevent detonation wave failure

• Dilution air, water, and constrictions used to 
dampen detonation exiting combustor

• Location of fuel injection tubes is variable; 
allows for imagining of different parts of the 
fuel jet/air mixture without moving the 
optical window

• Channel can also be operated fully premixed



Center for Combustion, Power and Propulsion

Channel wall sealing

• All channel walls sealed with silicone o-rings and o-ring cord stock

• “3D” o-ring design – silicone sealant used to connect o-rings at flanges

• Allows for relatively easy modification of the channel
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Optical access, schlieren, and PLIF systems

• Windows allow for complete optical access across the channel height

• Schlieren and PLIF optics aligned on single optics table
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Optically-accessible section cross-section
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• PLIF beam path
• Schlieren optical path
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Operating conditions  / Measurement techniques
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Property Range

Fuel composition Hydrogen, blends of natural gas and hydrogen

Oxidizer composition Air, oxygen, and oxygen-enriched air

Global equivalence ratio Fuel lean through stoichiometric

Initial temperature 20 – 200°C

Initial pressure 1 – 4 atm

• In addition to the optical measurements described on the previous slide, the channel is 
instrumented with pressure transducers

– 16 locations for pressure measurements
– Velocities calculated from pressure measurements
– Flush mounted with the inner channel wall
– Used to trigger camera in schlieren system

• DAQ:  12 simultaneously sampled channels (2 to 4 MS/s/channel)



Center for Combustion, Power and Propulsion

Example pressure profiles and detonation velocity calculation

• H2-air stoichiometric mixture, 16.5 psia initial pressure, 21°C initial temperature

• Time delays calculated using a cross-correlation of the pressure signals 

• Calculated velocity:  1921 m/s, ~2.5% below CJ velocity (1971 m/s)
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Uniformity of detonation wave at exit of initiation section
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• Three PTs installed at same axial location to measure uniformity of detonation wave

• Leading detonation wave is uniform heading into window test section (~4 μs difference, 
approximately equal to the travel time across each PT face)

CJ Pressure

~ 4 μs
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Channel characterization – velocity and peak pressure (1 atm)
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• Ten measurements for each equivalence ratio; error bars show range of value

• Detonation propagation is affected by confinement below Φ = 0.7
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Example pressure traces for detonation tests with mean flow
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Fully-premixed

Partially-premixed

Detonation 

Air or fully-
premixed mixture 

Fuel injection plane

• H2-air stoichiometric mixture

• 15.1 psia initial pressure

• 21°C initial temperature

• Two fuel tubes (D = 8 mm)

• ReD ≈ 11,000
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Detonation peak pressure near fuel injection plane
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Air
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• In general, peak pressure decreases as the detonation 
approaches the fuel injection plane

• Large variability in peak pressures at identical conditions; 
wave is significantly affected by upstream conditions 
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Increased initial pressure measurements – channel characterization
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• Ten measurements at each equivalence ratio; error bars show range of measurements

• 1 atm tests shows effect of confinement below Φ = 0.7 (galloping mode); 2 atm tests 
propagate “steadily” through range tested
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Detonation peak pressure near fuel injection plane (Pi = 1 and 2 atm)
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Air

Fuel 
injection 
plane

Detonation 

● Pinitial = 1 atm
○ Pinitial = 2 atm

• Co-flow and jet velocities identical for 1 & 2 atm tests

• Thirty cases for each equivalence ratio averaged to 
show general effect of increasing initial pressure
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• Continue detonation measurements of inhomogeneous mixtures in the 
parallel test configuration
– Mixture concentration variations measurements
– Schlieren imaging of detonation structures

• Measurements of the concentration variation in
simulated RDE (perpendicular) configurations

• Will start with configuration shown on right
– H2 jets: round holes
– Air jet:  slot

• Variable gap width, H2 hole diameter, air slot width

Next steps
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Perpendicular configuration (RDE simulation)

• Perpendicular test section is attached to part of the test channel to simulate an RDE

• Slow flow of fully premixed fuel/oxidizer used to establish planar detonation wave prior 
to interaction with the high velocity, perpendicular flow in the end section 

• Gap width variable between 0.20 and 0.75 in. (discrete increments)
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Future work / project goals
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• Mixing conditions that result in leading wave separation from the reaction 
zone

• Effect of mixedness on detonation cell structure and propagation mode (stable, 
spinning, galloping waves)
– affects detonation velocity and peak local pressures

• Measure leading wave front angle and detonation wave lift-off height above 
injection plane in a simulated RDE channel  
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Thank you!
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Extra slides
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Normalized peak pressure v. axial distance to injection plane
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Fuel-oxidizer mixing in an example RDE
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• Simulation of H2-air mixing in the Shank 
(2012) rotary detonation engine

• Authors found low fuel penetration into 
the air cross-flow near the injection 
location at baseline condition

• Air mass flux, fuel mass flux, and fuel 
injection location were varied 
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