

A Joint Experimental/Computational Study of Non-idealities in Practical Rotating Detonation Engines

PI: Mirko Gamba

Co-I: Venkat Raman

Fabian Chacon, James Duvall, Chad Harvey, Takuma Sato, Supraj Prakash, Damien Masselot

Department of Aerospace Engineering University of Michigan

2017 UTSR Workshop, November 1-2, 2017 Pittsburg, PA

DOE FE0025315 with Dr. Mark C. Freeman as Program Monitor

Outline

• Introduction to the problem and general approach

- Experimental activities
- Computational activities

Overarching objectives

• Use laser diagnostics to:

- Develop canonical systems for RDE investigation
- Understand the physics of RDE in lab- and full-scale configurations
- Provide data for validation

• Use high-fidelity simulations to:

- Understand basic detonation physics
- Simulate full scale RDEs

Overarching goal: investigate non-idealities and their link to loss of pressure gain

Detonation non-idealities

- Incomplete fuel/air mixing
- Fuel/air charge stratification
- Mixture leakage (incomplete heat release)
- Parasitic combustion:
 - Premature ignition (e.g., burnt/unburnt interface)
 - Stabilization of deflagration (flame)
- Detonation-induced flow instabilities
 - Richtmyer-Meshkov (R-M) instability
 - Kelvin-Helmholtz (K-H) instability
- They lead to loss in pressure gain
 - Linked to loss of detonation propagation
- Additional losses exist during flow expansion
 - Secondary shock and (multiple) oblique shock
 - Flow instabilities (e.g., K-H instability)
 - Mixture leakage through burn/unburnt interface

Objectives and tasks

Our approach: a multi-level physics study

Unit-physics decomposition

- Laser-based imaging
- Mixing measurement
- Detonation structure
- Temperature and species imaging

Injection & mixing

- Multiple injection mixing
- Shock-induced mixing
- DNS/LES modeling
- Experiments

Turbulence & detonations

- Linear analogue
- Detonations in stratified mixtures
- DNS/LES modeling
- Experiments

Detailed modeling

- Variable mixture ignition model
- Homogeneous reactor model with tabulated ignition times
- Non-equilibrium

Today we will discuss

• Experimental component:

- Update on experimental development
- Overview of round RDE work
- What we have learnt so far on round RDE
- -Some thoughts

• Computational component:

- Effect of injector mixing on detonation propagation
- Detonation / plenum interactions
- Full-system simulations

Outline

- Introduction to the problem and general approach
- Experimental activities
- Computational activities

Planned experimental multi-level approach

RDE full system:

- Link between mixing and performance
- Design from ISSI/AFRL

Linearized analogue:

- Detonation structure
- Detonation/turbulence interaction
- Detonation in stratified mixtures
- Design from ISSI/AFRL

Single or multiple injectors:

- Mixing studies
- Shock-induced mixing
- Our starting point

Experimental program in practice

Scope is the same, methods and hardware have improved

Injector sector subassembly

 Sector of RDE injector for shock-induced mixing and mixing effectiveness measurements

Reduced-scale RDE (6" RDE platform)

- Operational with H₂/Air, various flow rates and equivalence ratios
- Being expanded continuously
 - E.g., additional instrumentation added continuously

Optical RDE (Race-Track RDE)

- Fabrication being completed soon (mid-November)
- Equivalent to 12" round RDE
- Used for flowfield measurements under RDE relevant conditions

Shock-induced mixing: detonation/shock analogy

- Important parameters
 - Wave speed D (Mach number)
 - -Jet-to-ambient (induced flow) density and velocity ratios
 - Injection pressure and configuration

From: Schwer D. A. and Kailasanath K., AIAA 2010-6880

Interaction of shock wave with turbulent jet

From the past...

U

2

1

 \mathcal{U}_i

Working toward a theoretical model of shockpropagation through a stratified gas

Example: propagation of shock wave across a heavy jet

DME jet into Nitrogen Mach 2 incident shock

Added a benchtop injector sector (photograph of pintle)

- Sector of 6" round RDE geometry
 - Same injector
 - 1/8th diameter equivalent of round RDE
 - Optical access for laser diagnostics
- Used in support of"
 - Mixing measurements
 - Injector flowfield evaluation

Schlieren imaging to identify flow structure (non-reacting mixing)

Time

Experimental program in practice

Scope is the same, methods and hardware have improved

Injector sector subassembly

Sector of RDE injector for shock-induced mixing and mixing effectiveness measurements

• Reduced-scale RDE (6" RDE platform)

- Operational with H₂/Air, various flow rates and equivalence ratios
- Will be expanded to include:
 - MCFs capability
 - Additional instrumentation to investigate RDE dynamics

• Optical RDE (Race-Track RDE)

- Fabrication being completed soon (mid-november)
- Equivalent to 12" round RDE
- Used for flowfield measurements under RDE relevant conditions

A flexible round RDE at U-M

- Modular configuration
- Multiple injection schemes
 - AFRL design (radial injection)
 - Semi-impinging jets (ONERA¹)
 - Pintle injector (NRL²)

Injection schemes considered so far

When first assembled

Some changes from last time: additional instrumentation

Instrumentation (16-channel CTAP)

Window mount for round RDE

What I said last year: How it will look like after integration is completed

Gas sampling (exhaust emission measurements)

How it actually looks today

... And after many runs: 100th run of the RDE

Typical test sequence

• (Some) instrumentation:

- High-speed movies of detonation wave
- Air/fuel inlet manifold pressures
- Air and fuel mean plenum pressures
- Air and fuel plenum dynamic pressures
- Exhaust pressure measurements

- CTAP from inlet to exhaust
- Detonation channel dynamic pressure (PCB)
- Detonation channel dynamic and mean pressure (Kulite)
- Acoustic signature (external)

Typical test sequence (camera)

(Mind the noise – perhaps turn down the volume)

30 fps camera view

High speed detonation movie – end view (175 g/s; $\phi = 1$)

High speed chemiluminescence imaging (end view at 25,000 fps, 25 μs exposure)

Two modes of operation:

- A. Detonation (perhaps?)
- B. Deflagration (with axial/azimuthal instabilities)

The mode of operation can be recognized in the video in the left and the acoustic signature

A. Detonating mode: acoustic signature (175 g/s; $\phi = 1$)

Waterfall power spectrum of acoustic signature measured with a microphone:

A. Detonating mode: chemiluminescence (175 g/s; $\phi = 1$)

We monitor the time variation of emission intensity at various points in the detonation channel, and extract its power spectrum (shown below)

Variation:

Acoustic signature

Tone I, II and III characteristic of pintle geometry

Instrumentation

Variation of mean plenum pressures with air mass flow rate

Variation of mean plenum pressures with air mass flow rate

- Inlet (plenum) pressure increases with mass flow rate
- Inlet pressure in deflagration mode higher than when in detonating mode

Conditions at injector throat (pintle)

- Evaluated from measured plenum pressure using 1-D isentropic analysis
 - Mean, ideal values
- Cold flow:
 - Air injector throat chokes at 200 g/s
 - Throat Mach number 0.8: possibly due to loses (non-ideal discharge)
- Hot flow:
 - Fuel and air Mach number (at throat) remain constant in detonating mode (but less than 1)
 - Unknown if they remain chocked (even intermittently)

Instrumentation

Distribution of instrumentation in detonation channel

Time variation of CTAP measurements

 $300 \text{ g/s}, \phi = 1.0$

Test cases

Low frequency (3 Hz) instability at low mass flow rates

CTAP profiles: mean pressure distribution

Comparison of normalized pressure distribution along channel

• Pressure distribution self-similar when detonating

- Small variation with equivalence ratio

- Pressure distribution self-similar when deflagrating
- Pressure across air inlet throat drops faster for deflagrating then detonating mode

Variation with mass flow rate at constant ER

CTAP profiles: mean pressure distribution (dimensional)

Air injector inlet pressure (CTAP #1)

- Lower when in detonating mode
- Decreases with equivalence ratio
 - More stable detonation wave
 - A result of better mixing?

Exhaust pressure (CTAP #17)

- Nearly constant to ambient pressure
 - Important later

Mid-channel pressure (CTAP #13)

- Similar variation to inlet pressure
- Channel pressure decreases with lower equivalence ratio
 - Note: detonation is more stable at lower ER
 - Recall: pressure profile is insensitive to ER at higher flow rates

Distribution of instrumentation in detonation channel

Time traces (mid-channel, z = 0.5, Kulite)

Waterfall spectra from PCB

 $\phi = 0.8$

Waterfall spectra: Kulite vs PCB $\phi = 0.8$

 $\phi = 0.8$

Conclusion from waterfall spectra

- Multiple, superimposed tones
 - Wave propagation: $f \approx 0.8 f_{\rm D}$
 - Tone I: $f \cong f_D$ Present in detonation mode as flow rate increases, but also in deflagration mode
 - Tone II: $f \cong 0.5 f_{\rm D}$ Present in deflagrating mode
 - Tone III: $f \approx 0.25 f_{\rm D}$ Weak feature present in detonation mode
 - -?: Some not identified
- Hypothesis:
 - Due to coupling with and response of plenums

Instrumentation

Waterfall spectra in inner plenum (fuel) $\phi = 0.8$

Waterfall spectra in outer plenum (air) $\phi = 0.8$

- Conclusion so far:
 - Multiple, superimposed tones more analysis of pressure time series is needed
 - Not all tones are observed in plenums (I, II and III do not appear in air plenum)
 - Independent acoustic tone at $f \cong 1.6 f_D$ (not harmonic of f_D)
 - Unclear how they are related to acoustic of detonation channel and plenums

Toward imaging

View from side, through side-window, with camera

Race-Track RDE (RT-RDE) for optical access (12" diameter equivalent)

• Designed with optical access in mind

- Allows for optical access of injection system and detonation chamber

- Fuel injection system
 - Follows modular design approach of round RDE
 - Red/blue pair, with similar modularity
 - Injectors under design and study

Race Track RDE

RT-RDE Being Completed

SOME THOUGHTS

The hunt for Gain

O GAIN, WHERE ART THOU?

Can we measure the gain produced by this device? Well, not quite...

Intended use

Instead we have

Variation of downstream pressure (CTAP17)

Consider how th ³ operating condit

Measurement 1 – some tin

Consider how the air plenum pressure change with operating condition (ER and flow rate)

Measurement 2 – after some time with a different sensor in a different location (CTAP)

Consider how the air plenum pressure change with operating condition (ER and flow rate)

Measurement 3 – after some more time with a different CTAP sensor at the same location

Gain and the lack of loss

- Inlet pressure is lower in detonation than when in deflagration mode at the same ER and mass flow
 - Difference is Δ
 - Significant amount
 - Increases at lower ER (more stable detonation)
- To move the same mass, at nominally the same enthalpy, we require less inlet pressure
- Possibilities:
 - Are losses along channel less in detonation mode?
 - If losses are the same, is there pressure gain that offset them, thus requiring lower inlet pressure
- With the same turbine, operated at the same turbine inlet conditions, a smaller OPR compressor could be used
 - Can this lead to increase in efficiency?

Outline

- Introduction to the problem and general approach
- Experimental activities
- Computational activities

CFD Tools for RDE Applications

Venkat Raman, Mirko Gamba

University of Michigan

Full-scale Solver with Detailed Chemistry

• OpenFOAM code base

- Fully rewritten to provide low dissipation shock-capturing
 - Low dispersion/dissipation finite volume approach
- Detailed chemistry by integration with Cantera
 - Any chemistry mechanism can be simulated

• CPU/GPU capability

- Direct chemistry integration
- Scaling tested up to 10K cores
 - No bottleneck for 50K cores

• Time to solution

- Time from obtaining CAD file to full simulation data
- Reduced from 8.5 months (UM geometry) to 2 days (NETL)

Adaptive Mesh Refinement

- Resolving structures of detonation
 - → Requires $\Delta x \approx O(10-6) O((10-7)m$ (Powers et al.)
 - For full-scale simulations, uniform grid is computationally restrictive

• AMR advantages

- Gives sufficient resolution to resolve detonation structure
- Reduce numerical dissipation
- Reduce computational cost

Powers, J.M. and Paolucci, S. "Accurate Spatial Resolution Estimates for Reactive Supersonic Flow with Detailed Chemistry", AIAA JOURNAL, Vol. 43 No. 5, May 2005

• Pressure jump followed by delayed ignition captured

Dynamic meshing ensures that shock is not smeared

• AMR provides significant cost advantage

- Choice of refinement criterion is important
- Dynamic load balancing needed (currently being implemented)

- Cellular structure validation
 - Iongitudinal tracks from the intersection points
 - 2 cell structure across the channel width

C2H4/ O2, 0.1 atm, 300K $angle = 3 \ \mu m$, h = 2 mm

Full Scale Configuration (AFRL)

AFRL RDE Detonation Structure

• Complex wave structure

Strong backpropagation into inflow plenums

- Flashback occurs when a detonation pass through
 - Mach barrier at the choke point is broken
- Recovers quickly
 - Pushed back due to the plenum pressure

Summary and Future Work

- Basic research components completed
- Full scale simulation tool developed, tested
 - Full scale calculations with AFRL/Purdue/UM rigs now being conducted

- Next step
 - Develop response surfaces between operating conditions and RDE performance [For optimization]
 - Develop sensitivity capabilities within OpenFOAM

Questions?