

Integrated Computational Materials Engineering (ICME) Approach to Materials Design

Hierarchy of Materials Design Models

ICME Design of High-Temperature Turbine Materials QuesTek Innovations LLC, Evanston, IL

Systems Design Chart

NIST-Funded Materials Genome Case Study

Materials Innovation Case Study: QuesTek's Ferrium[®] M54[®] Steel for Hook Shank Application

- **ICME-based approach**
- fleet
- with flight qualification within 3 more
- innovation in less than 10 years

Cost-Effective, Castable Single Crystal Superalloy for Turbine Blade Applications Jiadong Gong (jgong@questek.com) PI - DE-SC0009592 Phase II.A DOE NETL SBIR Program, TPOC Mark Freeman

Design Challenge: Single crystal Ni superalloy with low Re, good castability, yet similar creep resistance to current alloys

QTSX design performs well in component-level prototypes

Public validation of success of QuesTek's

• Ferrium M54 Steel qualified for U.S. Navy T-45 hook shanks with >2x life vs. incumbent alloy, providing \$3 Million cost savings to the

• From design to commercialization in 4 years • Accomplishment of MGI goal of new materials

QuesTek's Commercially Available **Ferrium Steel Application Successes**

Ferrium C61[™] rotor shaft for Boeing Chinook helicopter offers 20% increase in power density (power to weight ratio) versus incumbent steel

