

Support Structure Optimization via Fast Process Simulation for Additive Manufacturing

Professor Albert To, Ph.D.

Associate Professor and CNG Faculty Fellow Director, ANSYS Additive Manufacturing Research Lab Department of Mechanical Engineering and Materials Science University of Pittsburgh

> DOE - 2017 University Turbine Systems Research Nov 1-2, 2017

Build Failures

- One of the most critical issues in AM
- Very common in practice
- Result of residual stress or residual distortion

AM Support Structure Optimization

- AM support structure
 - Current design solely based on experience
 - Many build failures → huge problem!
- Use topology optimization for support design
 - Reduce # of trials, save material, save build time
- Technical barriers
 - Topology optimization requires 50-300 iterations
 - Current AM process simulation is too slow (hours to days)

Fast Process Modeling

Experimental Validation

End Displacements of Double Cantilever Beam

	Left end	Right end
Experiment	0.95 mm	0.56 mm
Simulation	1.07 mm	0.61 mm

- Simulation took less than <u>5 minutes</u>!

AM Support Structure Optimization – Test Case 1

Naximum stress

- 60% mass reduction

AM Support Structure Optimization – Test Case 2

Complex part for printing

Optimized support structure design

Successfully printed using optimized design

Failed using generic support design

Conclusions

- Design of support structure is critical for mitigating build failure resulting from residual stress and distortion
- A fast process model based on eigenstrain theory has been developed to predict residual stress/distortion
- Preliminary results show good accuracy with 5-10% error
- Topology optimization, coupled with fast process model, seems to be feasible for support structure design
- More research needed to refine the fast process model and explore different optimization strategies