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Conclusions and Acknowledgements

e Synthesized and characterized ceria-zirconia (CZ) mixtures with different
molar compositions.

e Prepared LSCF-CZ cathode inks with different weight ratios.

e (Quantified the electrical performance of button cells with LSCF-CZ
cathodes.

e Determined the long—term voltage stability of LSCF-CZ cathodes.

e |t was found that:

— The doped ceria layer can be avoided provided low-temperature firing of the
cathode inks.

— The cell voltage appears to remain stable over relatively long-term testing.
— The cell power density is not up to par as of yet.

— The cathode properties need further refinements to achieve higher power
densities.

e This project was supported by the Department of Energy under Award
Number DE-FE0026168.

 Many thanks to Project Manager Steven Markovich and the NETL SECA
program team.
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Presentation outline

* Project objectives

 Background

e Technical approach

e CZ synthesis and characterization
e Cathodes inks and pull test

e Button cell testing

e Cell post-mortem characterization
e Path forward

e Conclusion
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Project objectives

e Synthesize and characterize ceria-zirconia (CZ)
mixtures with different molar compositions.

* Prepare LSCF-CZ cathode inks with different weight
ratios.

e Quantify electrical performance of button cells
with LSCF-CZ cathodes.

e Determine long—term voltage stability of LSCF-CZ
cathodes.

Supported by: ) ENERGY



Background

e Solid Oxide Fuel Cells use cathodes that must have very specific
properties.

» Cathodes need to have high electrical conductivity and excellent
catalytic activity for reducing oxygen.

» For intermediate and low temperature SOFCs, lanthanum strontium
cobalt ferrite (LSCF) cathodes are common.

» A doped ceria barrier layer needs to be used to prevent unwanted
chemical reactions at the electrolyte interface.

e There is evidence that a LSCF-CZ mixture does not produce the
unwanted SrZrO, compounds at the electrolyte interface after
sintering at 850°C even without the ceria barrier layer.

» The indication is that this mixture stabilizes the Sr?* cations in LSCF

and suppresses the mobility of strontium, and therefore prevents the
reaction between LSCF and YSZ.

» These studies are limited to one composition, one button cell test, and
the mechanism of preventing Sr segregation in not fully explained.
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Technical approach

e Synthesize and characterize different molar compositions of CZ
powders:

» XRD, EDX, HR-TEM, and XPS.

 Prepare cathodes inks made of LSCF and CZ with different weight
ratios.

e Screen print inks on commercially available anode supported bi-
layers.

» Scotch tape pull test.

e Perform button cell testing including a performance baseline.
» V-time, VJ, and IS.

e Prepare button cell for post-mortem analysis.
» SEM-EDX, XPS, and HR-TEM.

e Determine mechanisms of SrZrO, formation and prevention based
upon results from post-mortem analysis.
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CZ synthesis and characterization

e Synthesized the following molar compositions:

Ceo521010;
Ceo421050;
Ce72%030;
Ceo27040;

Cey52ry 50, Cep 5250,

e SSR route:

» Zirconium and cerium oxide powders mixed with the appropriate molar ratio, milled for 1 hour in
a zirconia vial, fired at 1600°C for 1 hour, and then milled for 1 hour.

» Used for comparison and training purposes.

* NIT route:
Nitrates of Ce(NO,);#6H,0 and ZrO(NO,),e5H,0 were used as precursors.

Hydrogen peroxide solution (30 wt%), ammonia water (25 wt%), and de-ionized water used as
precipitator.

Precipitate formed at around 50°C with stirring during the precipitation for about an hour.

Precipitate dried overnight, decomposed at 300°C for 1 hour, and then followed by calcinations at
700°C for 3 hours.

Resulting powders were milled for 1 hour.

Y VV VYV
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XRD characterization (SSR)

* Incorporation of Zr into the CeO, crystal lattice causes a slight peak shift from the pure cubic structures,
indicating a change in the lattice parameters.

e This shift occurs at all Zr contents; however, it is more pronounced at higher concentration of Zr and
especially on the high 2-theta range.

* The last curve (top) shows that the highest content of Zr (Ce, ;Zr, sO,) produces a more drastic change in the
cubic structure.

* Right figure seems to indicate that a secondary phase is starting to appear at this Zr concentration which is
mostly likely free ZrO, that has not incorporated into the ceria cubic lattice.
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XRD characterization (NIT)

e The NIT powders do not show a peak shift like the one seen in the SSR.
* However, the data indicate that a secondary phase may be occurring at lower Zr contents.

* Inthe right figure, the free ZrO, is clearly observed with a peak at around 33 degrees, and
it is visible at a Zr content of 0.3.
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EDX characterization

EDX results are in line with expectations.
Zr molar composition off with lower Zr content.

] 1 2 3
[Ful Scale 2964 cts Cursor 3044 (214 cts)

55 R Powders NIT Powders
CesoZro102 CessZroi1n
Element  Line Weight% Atomic% Hement  Line Weight% Atomic%s
0] K 2005 68.01 Actual Formula 0 K 2017 68.15 Actual Formula
Zr L 488 290 Ce Zr L 506 3.00 Ce Zr 0]
Ce L 75.07 2908 0.87 Ce L 74.77 28.85 087 0.09 204
Totals 100.00 9999 Totals 100.00 100.00
CeosZroaOn CessZroan
Element  Line Weight% Atomic% Hement  Line Weight% Atomic%s
O K 2021 6755 Actual Formula 0 K 2138 65.08 Actual Formula
Zr L 8.74 371 Ce Zr L 9.70 530 Ce Zr o]
Ce L 70.05 26.74 0.80 Ce L 68.92 2543 076 0.17 207
Totals 100.00 100.00 Totals 100.00 10001
Ceo.7Zroan CessZroan
Element  Line Weight% Atomic% Hement  Line Weight% Atomic%s
(o] K 20.01 66.60 Actual Formula 0 K 21.68 68.79 Actual Formula
Zr L 14.68 837 Ce Zr L 14.64 814 Ce Zr 0
Ce L 65.31 2483 0.74 Ce L 63.68 23.07 0.69 0.24 206
Totals 100.00 100.00 Totals 100.00 100.00
CepsZrosOn CepsZrpan
Eement  Line Weight% Atomic% Element  Line Weight% Atomic%e
o) K 21.70 67.93 Actual Formula 0 K 24.08 70.85 Actual Formula
Zr L 21.31 11.70 Ce Zr L 20.1%8 10.42 Ce Zr 0]
Ce L 36.99 2037 0.61 Ce L 3574 18.73 056 031 213
Totals 100.00 100.00 Totals 100.00 100.00
CeosZrosOn CepsZrosn
Element  Line Weight% Atomic% Element  Line Weight% Atomic%
0] K 224 68.06 Actual Formula 0 K 2399 69 84 Actual Formula
Zr L 2715 1446 Ce Ir L 2741 14.00 Ce Zr
Ce L 0.4 1749 052 Ce L 48.61 16.16 048 042 210
Totals 100.00 100.01 Totals 100.01 100.00
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XPS characterization

— SURVEY

XPS results are in line with 10%¢ Point2
expectations for SSR samples. 09 4
But not for the NIT samples.
. . . 06 [
XPS is more surface sensitive . Pan
while EDX is more of a bulk ) ots
technique. R -
Only two samples were analyzed. :
. 12IOD Q(I)O GEI]O 360 (I}
Energy(eV)
SSR Powders NIT Powders
CepgZrp20; Ceg8Zrp20;
Element Line  Weight% Atomic% Element Line  Weight% Atomic%
O K na 67.82 | Actual Formula O K na 73.06 | Actual Formula
Zr L na 6.12 Ce Zr (6] Zr L na 3.75 Ce Zr (6]
Ce L na 26.06 0.78 0.18 2.03 Ce L na 23.19 0.70 0.11 2.19
Totals 0.00 100.00 Totals 0.00 100.00
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* Bright field image shows the
nanosized powder of about 25
nm.

e Electron diffraction confirms
cubic structure of CZ mixture.

e Lattice constant estimated to
be 5.25 A (compare to cubic
cerium oxide of 5.410 A).

e Higher magnification images
illustrate the lattice.
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CZ molar composition selection

* Given the XRD results, the following two CZ
compositions for the initial ink preparation were
chosen:

1. Ceyqlry 4,0,
2. Ceyglry -0,

e Basically, no free zirconia should be present to
prevent the formation of SrZrQO,.
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Compatibility study

e Objective of this study is to determine the
temperature and weight ratios at which
secondary phases may start to appear.

e Results of this study aid in determining the
firing temperature of the LSCF-CZ inks for cell
testing.

* Given the XRD results, cathodes should be
fired below 900°C and preferably at 850°C.
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Cathodes inks

e CZpowders added to LSCFin 5, 10, and 15 wt% and mixed with an
ink vehicle obtained from fuelcellmaterial.com (FCM).

e Total powder to ink loading is 60:40 as recommended by FCM for
their ink vehicle.

e Six different inks were prepared for a minimum of six button cell
tests.

Mass (g) Mass (g)
ID CegoZry10; | LSCF ID CeggZro20, | LSCF
9C1Z+LSCF_5 0.500 9.500 8C2Z+LSCF_5 0.500 9.500
9C1Z+LSCF_10 1.000 9.000 8C2Z+LSCF_10 1.000 9.000
9C1Z+LSCF 15 1.500 8.500 8C2Z+LSCF 15 1.500 8.500
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Pull test

e Used LSCF paste from FCM; no CZ was used.

 Anode bilayer were also purchased from FCM.

e Pull test (scotch tape) results are shown below.

e Data show that “adhesion strength” is best when fired at 950°C or higher.

Sample ID | Firing Temp (°C) | Firing Time (hrs) | Scotch Tape Test | Residue on Tape

Pass Heavy
PT2 900 2 Fail Heavy
PT3 950 2 Pass No
PT4 1000 2 Pass No
PTS5 1050 2 Pass No
PT6 1100 2 Pass No
PT7 850 4 Pass Light
PT8 850 6 Pass Light
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Cell 03

* Delphi bilayer and LSCF paste from FCM.
e (Cathode fired at 1100°C for 1 hour.

e Virtually zero power is obtained due to SrZrO; formation at the electrolyte
interface.

* Voltage stable; a possible indication that SrZrO; formation is complete.
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Cell 04

e Delphi bilayer and LSCF paste from FCM.

e (Cathode fired at 950°C for 2 hour.

e Alittle better than Cell 03 but power decays to nothing.
e Indication is that SrZrO; formation still ongoing.
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Button cell testing (baseline)

e Cell 02 Delphi baseline long-term test (Ni-YSZ/YSZ/SDC/LSCF).
e LSCF fired around 1100°C.
e Stable performance over 1000 hours.

e Current density decrease after 850 hours likely due to Arbin
damage; no change in voltage when current density decreases.

e Cell performance at 750°C is quite good; irrelevant as the
temperature reaches 500°C.
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Cell testing w/o barrier layer or CZ

|  Components | Comments
Ni-YSZ/YSZ/LSCF (FCM ink) LSCF fired at 850°C/2hrs
Ni-YSZ/YSZ/nano-LSCF (homemade) LSCF fired at 850°C/2hrs

e No SDC barrier layer used.
e No CZ used in LSCF.

* Fired cathode current collector in situ.

e Stable performance but cathode
polarization is too large.
 Need to improve power density.
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Button cell testing (LSCF-CZ)

20

110 | 200 110 § 19
. I 190 k
—Voltage (Cell 9) 18
100 ~—=\oltage (Cell 10} 1.00 17
—VYoltage (Cell 11)
——Current Density (Cell 09) 0.90 ——Voltage (Cell 16) 16
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* No SDC barrier layer used; LSCF-CZ fired at 850°C/2hrs.
. . . Ce 09 Ni-YSZ/YSZ/LSCF+15%Ce, oZr, ,0O
* Fired cathode current collector in situ. NI-YSZ/YSZ/LSCF+10%Ce, 71 10,
* Stable performance in most cases. Ni-YSZ/YSZ/LSCF+5%Ceq s21,,,0,
. . Ni-YSZ/YSZ/LSCF+5%Ce, oZr, ,O,
* Higher CZ content, higher voltage. Ni-YSZ/YSZ/LSCF+10%Ceq oZr, 10,
* Relatively higher performance for Ce, 4Zr, ;0,. Ni-YSZ/YSZ/LSCF+15%Ce, Zro 10,
e Higher performance than pure LSCF when using 15% CZ.
* Nonetheless, need to improve power density.
 Need to optimize cathode properties such as porosity,
adhesion strength, etc. .
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Impedance spectroscopy (LSCF-CZ)

e Cathode polarization is too high!

 Need to optimize cathode properties such as porosity, adhesion
strength, etc.
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Voltage vs power density (LSCF-CZ)

e Max power density below par when
compared to Delphi technology.
* Need to improve reproducibility of cell

testing assembly.
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1D Components P (W/em?) [ Tested on | Comments
Cell 02 Ni-YSZ/YSZ/Doped Ce/LSCF 1.19 Ql Delphi Cell
Cell 08 Ni-YSZ/YSZ/LSCF (FCM ink) 0.55 Q2 Baseline 1
Cell 09 Ni-YSZ/YSZ/LSCF+15%Ce, 71,0, 0.53 Q3
Cell 10 Ni-YSZ/YSZ/LSCF+10%Ce, 71,0, 0.44 Q3
Cell 11 Ni-YSZ/YSZ/LSCF+5%Ce, <71, ,0, 0.45 Q3
Cell 12 Ni-YSZ/YSZ/LSCF+5%Ce, oZry 10, 0.35 Q3
Cell 13 Ni-YSZ/YSZ/nano-LSCF (homemade) >().45% Q3 Baseline 2
Cell 16 Ni-YSZ/YSZ/LSCF+10%Ce, o214 10, 0.59 Q4
Cell 17 Ni-YSZ/YSZ/LSCF+15%Ce, o214 10, 0.40 Q4

*Power booster failure; data taken from voltage-time curve.
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Cell post-mortem characterization (SEM)

e Cross sections of a typical Delphi tested cell:
» Electrolyte layer about 10 um.
» Ceria layer about 4-5 pm.
» Cathode porous layer about 30 um.
» Damage occurred during current collector removal and sample
preparation.

SR U,S, DEPARTNENT OF 24
Supported by: ) ENERGY



Cell post-mortem characterization (SEM)

e Cross sections of tested Cell 17:
» Electrolyte layer about 10 um.
» No ceria layer!
» Cathode non-porous layer about 30 um.
» CZirregular shape particles clearly visible.

20.0 kW 1000x
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LaLal SrLal 0 bia

Fe Kat O Kal YLat

 EDX maps of the relevant elements for Cell 17 at

shown magnification.
e Srisuniformly distributed and unable to detect

any segregation.
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Cell post-mortem characterization (EDX)

e EDX maps of the relevant elements for Cell 17 at
higher magnification.
e Again unable to detect any Sr segregation.

Fe Kal O kal
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Cell post-mortem characterization (EDX)

e Spot EDX analysis for Cell 17.
e Srnumbers are within the EDX experimental error which should be around 1%.

= Y

10um Electron image 1

| | Element Weight% | Atomic% ||
. OK | 1787 5562 OK 1745 | 5462

| FeK | 1586 14.14 Fe K 1802 | 1616

| CoK | 434 3.8 CoK 461 | 392

| NiKk | 173 1.46 NK 141 | 120

. SrL | 10.63 6.04 SrL 1150 | 657

| ZrL | 638 3.59 ZrL 325 | 179

| LaL | 3022 10.83 Lal 3367 | 1214

| CeL | 1258 447 Cel 1000 | 360

Totals  [100.00 Totals 100.00

28
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Path forward

e Significant results:
» LSCF-CZ can be used to remove the ceria barrier layer .

» Low temperature firing of the cathode prevents the
formation of SrZrO,.

» The formation of SrZrQO, is a strong function of
temperature.

» Stable cell voltage over long time.

e Path forward:

» Improve cathode adhesion to the YSZ layer
(nanopowders, sintering aids, etc.).

» Improve cell power density by lowering cathode
polarization.

» Test larger scale cells.
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Conclusions and Acknowledgements

e Synthesized and characterized ceria-zirconia (CZ) mixtures with different
molar compositions.

e Prepared LSCF-CZ cathode inks with different weight ratios.

e (Quantified the electrical performance of button cells with LSCF-CZ
cathodes.

e Determined the long—term voltage stability of LSCF-CZ cathodes.

e |t was found that:

— The doped ceria layer can be avoided provided low-temperature firing of the
cathode inks.

— The cell voltage appears to remain stable over relatively long-term testing.
— The cell power density is not up to par as of yet.

— The cathode properties need further refinements to achieve higher power
densities.

e This project was supported by the Department of Energy under Award
Number DE-FE0026168.

 Many thanks to Project Manager Steven Markovich and the NETL SECA
program team.
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Thank you for your time.

Questions?

31
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