

Infiltration of SOFC Anodes for Improved Performance at High Fuel Utilization

Yanchen Lu, Paul Gasper, Uday Pal, Srikanth Gopalan and <u>Soumendra Basu</u>

Division of Materials Science and Engineering Boston University

Presented at the 18th Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting, June 12-14, 2017, Pittsburgh, PA.

Motivations for Anode Infiltration

- Performance enhancement
- Ni reduction High fuel utilization tolerance
- Incorporation of alternate materials for
 - Sulfur tolerance Coking tolerance

In a real stack, fuel utilization can exceed 85% Problem is worse at lower temperature

Yoon et al., J. Electrochem. Soc., 155, 2008, pp B610

Anode performance at high fuel utilization

Increasing triple phase boundary (TPB) length improves performance at high fuel utilization by increasing the exchange current density and decreasing anode activation polarization

Solution to Performance Loss at High p(H₂O)

- Ni infiltration of commercial Ni/YSZ cermet anodes
- Ni/YSZ anodes are already percolating
- Only infiltrated Ni particles on YSZ will add to TPB length
- Additional TPB will help retain performance at high P(H₂O)

Characterization of MSRI Button Cells

Reduced ACCL	
Porosity (%)	34.
	9

Liquid Infiltration of Ni-YSZ Anodes

Results of Liquid Infiltration

For the reduced sample, after 12 cycles, the infiltrated Ni content corresponds to:

- 2.35 volume % of anode, or:
- 6.75 volume % of the pores

Characterization of Infiltrated Anodes

Uninfiltrated

Infiltrated

Liquid infiltration of conventional Ni/YSZ cermet can can lead to deposition in the anode active layer

Quantification of Particle Size Distribution

SEM Image Ni Particle selection Image separation D_{eff} calculation

Particle Size Distribution in Active Layer

Particle diameter range (nm)

Location of Ni Nanoparticles

- Ni particles tend to strongly favor YSZ grains and are hemispherical
- Most Ni particles will contribute to TPB formation

TPB in AAL (μm/μm³)	
Original Ni/YSZ cermet	3.34
Ni Nanoparticles	6.82

Infiltration of Ni/YSZ anode triples AAL TPB length

I-V Curves: Infiltrated vs Uninfiltrated

Effect of p(H₂O) and T on I-V Curves

P(H ₂ O)	MPD(X%H ₂ O)/MPD(3%H ₂ O) 700°C	P(H ₂ O)	MPD(X%H ₂ O)/MPD(3%H ₂ O) 700°C
3%	1	3%	1
25%	0.85	25%	0.96
50%	0.75	50%	0.86

Mitigation of performance degradation at high fuel utilization by infiltration becomes more effective at lower temperatures

Ni Nanoparticle Instability at 800°C

Effect of High Temperature Exposure to H₂O(v)

As-infiltrated

After annealing 800°C, **90% H₂O**, 48 hours

	As-infiltrated
Particle Density (#/um ²)	26.11
Average Diameter (nm)	54.31
Particle Volume (nm ³ /nm ²)	2.73

Annealing alone leads to coarsening, but not disappearance

Ni Nanoparticles in Ni-YSZ Anode at 800°C

Anode Active layer under cathode (Electrochemically active) (Electrochemically active) (Electrochemically inactive)

Anode bulk layer under Anode active layer not under cathode

cathode

Particle Density (#/µm²) Particle Volume (nm³/nm²)

Electrochemically active AAL 1.37 0.367

Decreasing local current density

Reducing Local Current Density by using MIEC

Replace Ni/YSZ with Ni/GDC Anode Active Layer

Overall performance not as good, but positive effects of Ni nanoparticles remain at 800°C

Ni Nanoparticles in Ni-GDC AAL at 800°C

AAL not under cathode (Electrochemically

AAL under cathode (Electrochemically active)

Particle Density (#/µm ²)	5.50	
Average Diameter (nm)	113.72	
Particle Volume (nm ³ /nm ²)	4.45	

Ni nanoparticles are more stable under reduced local current density (electric field) due to the presence of the MIEC (GDC) in the AAL

Not Under Cathode

Co-infiltration of Ni and GDC in Ni/YSZ Anode

1.00 2.00 3.00 4.00 Energy - keV

Ni:GDC molar ratio of 1:1

TEM of Ni/GDC Nanoparticles in Top View

TEM of Ni/GDC Nanoparticles in Cross-Section

Nickel Vapor Thermodynamics

Nickel Vapor Thermodynamics

- 50% water vapor/ 50% forming gas (5% H₂, 95% Ar)
- Unlimited Ni supply
- 1400°C

Vapor Phase Infiltration of Ni in Ni-YSZ Anodes

Nickel nanoparticles in Ni-YSZ anode active layer

Nickel nanoparticles in bulk Ni-YSZ anode

Vapor phase infiltration of Ni in commercial anodes is feasible

Conclusions

- At high fuel utilization, the cell performance degrades due to increased anodic activation polarization losses
- Liquid phase infiltration increases the TPB length in the anode active layer by a factor of 3.
- For 3% H₂O-97% H₂ fuel, the infiltrated cells show a 35% improvement at 700°C and a 58% improvement at 600°C compared to uninfiltrated cells.
- Anode infiltration becomes increasingly effective at lower temperatures, by mitigating the negative effects of performance degradation at high fuel utilization
- At 800°C, the Ni particles disappear only in the anode active layer in the region below the cathode, indicating that current density plays a role.
- Introduction of an MIEC like GDC can reduce the local current density and stabilize the nanoparticles
- An innovative *in-situ* vapor-phase infiltration of the anode directly by Ni has been demonstrated and process optimization is undergoing

Acknowledgements

Project funding: DOE/NETL Award #: DE-FE0026096

A. Nikiforov, A. Krupp, D. Cetin, and R. Wang Boston University, Boston, MA 02215

S. Markovich, H. Abernathy, S. Vora *NETL, Pittsburgh, PA 15236*

