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Outline
• (La1–x Srx)1–y MnO3±d (lanthanum strontium manganite, LSM) 

— effect of Mn excess (A-site deficiency) on long-term performance

• Durability testing ⇒ ASR (area specific resistance) vs. time

• Cathode microstructural changes 

• TEM (transmission electron microscopy):

• Phase composition gradients •     MnOx formation

• 3DR (3D reconstruction): 

• TPB (three-phase boundary) density (total & active) 

• Densification at cathode–CCC interface 

• Porosity gradients

• Summary & conclusions 



Cell specifications; testing procedures
• Button cells fabricated at LGFCS 

• 8YSZ electrolyte •  NiO / 8YSZ anode 

• Cathodes: LSM / 8YSZ 
• A: (La0.85 Sr0.15)0.90 MnO3±δ (LSM 85-90) — 11% Mn excess 

• B: (La0.80 Sr0.15)0.95 MnO3±δ (LSM 80-95) — 5% Mn excess

• C: (La0.80 Sr0.15)0.98 MnO3±δ (LSM 80-98) — 2% Mn excess

• Cell testing 
• Anode: humidified H2, 50 sccm
• Cathode: ambient air 
• Accelerated tests: 

1000 °C, 0.760 A cm–2

• Conventional tests: 900 °C, 0.380 A cm–2

• I-V and EIS scans every ~24 or ~48 h



LSM 85-90 
(A; 11% Mn xs)
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ASR (minus electrolyte) vs. t: A, B, C cathodes, accelerated

A – B – C comparison: Electrode* ASR (accelerated testing) 

LSM 85-90 (11% Mn xs):
• Highest ASR overall
• Highest rise in ASR 

ASR ↓ as Mn excess ↓
(A → B → C)

LSM 80-98 (2% Mn xs):
• Lowest ASR overall
• Highest power, 500 h 
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LSM 80-95 
(B; 5% Mn xs)

LSM 80-98 
(C; 2% Mn xs)

*) total cell DC ASR, minus estimated ASR for 8YSZ substrate @ nominal thickness & DC conductivity



LSM 80-95 (B) durability testing: reproducibility
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Two cells, accel’d conditions, 500 h
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specimen 1 specimen 2
porosity 27 vol% 28 vol%

YSZ 36 vol% 37 vol%
LSM 37 vol% 36 vol%

total TPB 27.4 µm–2 21.7 µm–2

active TPB 24.2 µm–2 20.0 µm–2

LSM 80-98 (C) as received, two specimens

Reproducibility of 3D reconstruction data

specimen 1 specimen 2

Phase fractions & TPB

Phase profiles

standard deviations 
avg. microstructural params.: 0–5%

TPB: ~15%
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Microstructural change after 500 h accelerated testing

• Coarsening of pores 
& LSM

• Densification of CCC

• Highest overall 
microstructural 
stability

• Coarsening of pores 
& LSM

• Densification of CCC

e’lyte cathode CCC
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A – B – C comparison: Phase profiles across cathode (3DR)

All three cathodes developed slight 
porosity gradients after 500 h of accelerated testing, 

with lowest porosity at cathode-electrolyte interface

LSM85-90	(A)	500h	accel’d LSM80-95	(B)	500h	accel’d

LSM80-98	(C)	500h	accel’d



A – B – C comparison: Phase profiles at cathode/CCC interface (3DR)

500 h accel’d testingas received

LSM 85-90 (A)
11% Mn xs

LSM 80-95 (B)
5% Mn xs

LSM 80-98 (C)
2% Mn xs



A – B – C comparison: cathode-CCC interface (500 h accel’d testing)

In LSM 85-90 (A) and LSM 80-98 (C), at cathode-CCC interface: 
• Densification (bottom plot) 
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As	received	 500	h	accel’d

Cathode	A Cathode	B Cathode	C

As	received
Mn=4%

As	received
Mn=2%

As	received
Mn=0.5%

500	hrs Accel
Mn=2.5%

500	hrs Accel
Mn=1.5%

500	hrs Accel
Mn≤0.1%

Effect of excess Mn: MnOx in CCC before and after 500 h accel’d testing



A – B – C comparison: porosity and TPB density

Vs. LSM 85-90 (A) and 80-98 (C), LSM 80-95 (B) shows:
• Less pore coarsening and loss of pore area
• Stabler TPB (total and active)

LSM	85-90	(A);	11%	Mn xs LSM	80-95	(B);	5%	Mn xs LSM	80-98	(C);	2%	Mn xs

as	rec’d	 493h	accel as	rec’d	 500h accel 624h	accel as	rec’d	 500h	accel

sample	volume,	µm3 4350 4525 6300 5096 4550 4100 5012
porosity,	volume % 17 18 29 25 25 28 25
pore	diameter,	μm 0.23 0.42 0.38 0.5 0.46 0.28 0.44
pore	surface	area,	µm–1 26 14 16 13 13 21 14

total	TPB, µm–2 17.1 5.9 14.5 14.8 11 21.7 11.1
active	TPB, µm–2 10.3 5.1 13.0 12.5 10 20.0 10.2
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• As Mn excess ê, 
ASR ê
(A → B → C)

• As test t é:
• Active TPB ê
• Total ASR é

• Effects diminish 
as Mn excess ê
(A → B → C)
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A – B – C comparison: ASR and TPB density

reproducibility: 
ASR [ Ω cm2 ], 0 h:   ± 0.08 (A);   ± 0.03 (B)
active TPB density [ µm–2 ], 0 h: ± 3.0 (C)  

◼
◼
◼



• During accelerated testing up to 624 h: 
• LSM 85-90 (A) cathode:

• Pore coarsening •    Densification at cathode/CCC interface

• MnOx segregation at electrolyte-cathode interface
• LSM 80-95 (B) cathode: 

• Stablest microstructure 
• LSM 80-98 (C) cathode: 

• Lowest initial TPB density, but decreased markedly w/time

• Lowest ASR, highest power 

• Microstructure–performance trend over time:
• TPB density ê •   ASR é

• These trends are less pronounced as Mn excess decreases

Summary & Conclusions



Ongoing & Future Work

• Cathode D: composition selected; powder ordered  

• Cathode A on same electrolyte as B and C (and (soon) D) 

• Continue to explore relationship between TPB and ASR

• vs. LSM composition •  Accelerated vs. conventional testing 

• Exploring other effects — see poster (Gu et al.) 

• Diurnal (24-h) periodicity 

• LSV / EIS checks — a source of degradation? 
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