Degradation of LSM-Based SOFC Cathodes Under Accelerated Testing

Naima Hilli,1* Hsiang-Jen Wang,1 Min-Jae Jung,2 Celeste Cooper1, Thomas R. Dietrick1, Mark R. De Guire1, Richard Goettler2, Zhien Liu2, and Arthur H. Heuer1

1) Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
2) LG Fuel Cell Systems Inc., North Canton, Ohio 44720

*nhilli147@case.edu; 216-398-4128

Abstract

To study the effects of composition on performance and microstructural evolution in SOFC cathodes based on lanthanum-strontium manganite (LSM, (La1−xSrx)0.5MnO3-δ), button cells with three different LSM compositions were operated for up to 624 h under conventional and accelerated conditions. The cathode compositions differed primarily in the degree of manganese excess (Mn / (La+Sr) > 1). The cells underwent durability testing (voltage versus time at constant current density) with intermittent linear-sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) measurements. Post-test microstructural analysis consisted of transmission electron microscopy (TEM) with energy-dispersive x-ray spectroscopy (EDXS), focused ion-beam scanning electron microscopy (FIB-SEM), and 3-D reconstruction. An LSM composition with an intermediate level of excess manganese gave low area-specific resistance (ASR) over time, and also exhibited high microstructural stability (minimal formation of manganese oxides, little cathode densification, and lowest decrease in three-phase boundary (TPB) density). The LSM composition with the lowest level of excess manganese gave the lowest values of ASR in up to 500 h of testing, but also exhibited significant increases in ASR and in TPB density over time.

3D reconstructions after 500 h accelerated testing

Volume fraction profiles of the YSZ, LSM, and pore phases across the cathodes: Top: As received samples. Bottom: Samples tested for 500 hrs under accelerated conditions.

Cell performance versus testing time

More MnO2 was observed in cathode A, both at the electrolyte interface and in the cathode current collector (CCC), MnO2 was absent in cathode C close to the electrolyte / cathode interface and in the CCC. In all three cathodes, the LSM composition remained uniform across the cathodes and the CCC after 500 h of testing.

Summary

After 500 h of accelerated testing:
- Cathode A exhibited higher rates of ASR rise than cathode B and C;
- Cathode A showed more MnO2 near the electrolyte and in the cathode current collector; no MnO2 was observed in cathode C.
- Cathodes B and C had higher porosity than cathode A at all stages of testing.
- Cathode B showed less pore coarsening and stabler TPB (total and active).
- All three cathodes developed porosity gradients after 500 h of accelerated testing, exhibiting lower porosity at the cathode / electrolyte interface than at the cathode / cathode current collector interface.
- As testing proceeds, active TPB density decreases and ASR increases. These trends diminish as Mn excess decreases.

Microstructural parameters from 3D reconstructions of cathodes:
- All three cathodes developed porosity gradients after 500 h of accelerated testing, exhibiting lower porosity at the cathode / electrolyte interface than at the cathode / cathode current collector interface.
- Cathode B shows less pore coarsening, less loss of pore area, and stabler TPB (total and active).