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LG Fuel Cell Systems 

Derby, UK 

•Technology leadership 

•System modeling & analysis 

•Generator module design 

•Turbo Generator design   

•Rolls-Royce Technical Support  

•Business HQ and leadership 

•Cell & Stack development  

•Fuel processor development 

•System integration 

•Control software development 

•Prototype Manufacturing & Testing 

Canton, Ohio 

•Manufacturing Tech development 

•LG Technical Support 

Seoul, Korea 

Foundational Value of LG and Rolls-Royce Joint Venture 

Rolls-Royce Fuel Cells 

• FC Technology 

• Fuel Processing 

• System Engineering 

• Design & Modeling 

• Scaled Testing 

• Years of know-how 

Rolls-Royce Group 

• Turbine & compressor 

• Aero-thermal expertise 

• High-temp Materials 

• Power Electronics 

• System Integration 

LG Group 

• Process Development 

• Volume Manufacturing 

• Design for Manufacturing 

• Supply-Chain Development 

• Electronics and Controls 
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EIS  

Phase 

• Drive cost and performance improvements 

• Validation of key new technologies 

• Field trials at “friendly” locations 

• Build robust supply chain 

R&D 

 Phase 

• Design, Build and Demonstrated 200 kW Class Integrated system  

• Completed over 2000 hours at efficiencies in the 60% range 

• Developed key components and subsystems 

• Established core fuel cell technologies 

Commercial 

Phase 

• Growth of product in North America 

• Expand breath of applications 

Transitioning to Entry into Service 
4 



Targeting 1MW Power System 

● Nominal 1MW SOFC System scalable from 250 kW to >20 MW  

● High availability for base load operation on natural gas 
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250 kW Fuel Cell Vessel 



LGFCS System Description 

● Pressurization to improve 

power density and 

performance 

● Anode recycle to allow for 

internal natural gas 

reforming 

● Cathode recycle to minimize 

components’ size and cost 

● Ejectors to drive recycle 

loops 

● Combustion products 

confined in small volumes 
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Integrated System Test Phase 1  

● Phase 1: IST, June 2015 

● Pipeline NG to grid AC 

● 200kW-class SOFC system 

● Demonstrated functionality 
of integrated subsystems: 

● Fuel processing 

● Pressurized SOFC vessel 

● Turbo generator assembly 

● Power electronics 

● Controls and safety system 

● ASR similar at scales 
ranging from: 

● Penta (5 cells) 

● Bundle (360 cells) 

● Strip (4320 cells) 

● System (259,200 cells) 

● Over 575 hours of operation 
● multiple startups and 

shutdowns 

● Over 200 hours on load 
● 200 kW AC Power  

● DC Efficiency ~60% 



Lessons Learned 

● Secondary Interconnect improvements for 
manufacturing and assembly 

● Metallic component corrosion issues 

● Performance loss due to high chrome 
release from corrosive components 

● Vessel power feed through failure due to 
moisture accumulation during cold weather 

● Balance of plant emergent behaviors 

● Frozen supply lines despite heat tracing 

● Communication power supply failure 

● Periodic blockage of control valve  
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Integrated System Test Phase 2 

● Phase 2: Prototype A 

● October 2016 

● Pipeline NG to grid AC 

● 200kW-class SOFC 
system 

● Successful on load 
operation for over 1000 
hours 

● Successful completion of 
test requirements 
including 

● Emissions testing 

● EMI Testing 

● Unmanned operation 

● Over 1490 hours of 
operation 

● multiple startups and 
shutdowns 

● Over 1190 hours on load 
● 180kW AC Power 



Performance and Analysis 

Extensive data set for design/control  validation 
Data used to benchmark design/performance tools 

Environmental effects verification 



Integrated System Test Summary 

● Over 2000 hours of 
systems testing including 

● Automated control/safety 
system 

● Multiple starts, stops, hot 
idle, emergency stops  

● Over 1300 hours on load 

● Identify and correct 
emergent behavior for 
improved reliability 

● Future Improvements 
identified to reduce 
corrosion, chrome and 
cost 

● Entry Into Service 
demonstration planned 
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Block Test For Proving Reliability 

● Lessons learned and 
improvements 
implemented in block 
test 
● In Block Reforming 

● Cr mitigation 

● High current density 

● Remove corrosive 
elements 

● Match system 
environment 
 moisture (1-3%)  

● Precursor to entry into 
service 

12 

Integrated Block Test 



Improved Fuel Cell Stacks (Amit Pandey) 

 
● Reliability activities 

● Durability improvement 

● Strip cost reduction 
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Reliability - Ceramic-Metal Joint 

● New mechanical clamp 
design joint is showing 
improved leakage stability 
compared to historical glass 
sealed joint 

● Established a new rig for  
long-term reliability testing 
under a fuel-air 
environment, including 
cycling 

● Performing block fit-ups.  
Entering block testing in Q1 
2017 
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12 joints, dual atm. fuel+air 

Low test pressure: failed joint 

Dotted: Glassed 

Solid: Clamp 



Reliability: New glasses for lower 
residual stress 

● Composition adjustment for CTE and flow improvement 

● Improve manufacturing yield rates 

● Minimize thermal stresses during transient states 
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Reliability - MMA Characterization 
(University of Washington) 

● Dense MMA: Room temperature MOR = 302 MPa, Weibull m= 20.7 

● At 850°C and 3.5% H2O MOR = 290 MPa 

● Extremely small rate dependence for failure stress indicates high 

resistance to slow crack growth, strength retention during service 

● Similar test for porous MMA substrate material underway 
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SCG Response Modeling: SSY 38% 
Dense

Constant Stress Rate SCG Response 

Dense part  850C (3.5% H2O) 

276 to 283 MPa avg.  

strength across 4 decades 

Constant Stress Rate SCG Response 

 of tube 850°C (50%H20+2.25H2+47.75N2) 

©2017 Univ. of Washington; used with permission. 



Durability: Validating a Cr-getter 
● Accelerated screening of 

candidate getter materials  

● Testing condition 
● 8 slpm, 12 mm diameter 

● 14%O2 3%-4.5%H2O, 825C 

● Cr2O3 pellets as source 

● Accelerated life test as coated 
metals have ~1/10th release rate 

 

 

Testing Outlet 

 

 

Cr volatility measurements supported 

by DE-FE000303 

Alumina Testing Fixture 

 

 

 Air Inlet Chrome Source         Getter 



Cost: Substrate and print design 

● Longer tubes achieve 82 cells 

● Includes shorter primary interconnect pitch 
(achieves 5% added active area) 

● Evaluating optimized channel spacing for 
additional ~5% cell width 

68x245 mm, 60 cells 

68x300 mm, 82 cells 

(PIC width reduced) 

80x310 mm, 82 cells 
+72% 



Improved Fuel Cell Stack Summary 

● Reliability activities 
● New ceramic-metal joint testing at TRL6 conditions (dual 

atmosphere) 

● New glass compositions show better CTE and flow 
characteristics 

● Dense MMA slow crack growth behavior very favorable to 
long-life 

● Durability improvement 
● Cr-getter material showing efficacy in aggressive lab-

scale testing at system face velocity 

● Supplied to future block tests 

● Strip cost reduction 
● Larger tubes supplied and printing demonstrating ~65% 

power increase 

● TRL5 triple bundle tests of larger tube, bundles planned 
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Advanced Materials and Manufacturing  

Objective: Qualify materials and manufacturing processes for integrated 
block metallic components to significantly reduce cost 

 

● Identify/validate advanced materials with foresight on mass 
production for mechanical properties, corrosion resistance, chromium 
release 

● Validate advanced manufacturing processes for specific components 
that meet functional requirements and product cost targets 

● Additive Manufacturing (AM) 

● Hot Isostatic Pressing (HIP) 

● Powder Injection Molding (PIM) 

● Spin Forming 

● Demonstrate in a block test that the new materials and components 
meet functional requirements do not adversely impact stack 
performance through block testing 
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Advanced manufacturing 
net shape powder metal 
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Program Partners 

● Carpenter Technology Corporation 

● Down-selected alloys powders: AM 

● Hip’d alloys: mechanical and corrosion  

testing; microstructural analysis 

 

● Gas Technology Institute  

● Corrosion testing (SOFC conditions)  

 Oxidizing, reducing and dual atmospheres 

 Thermal cycling 

 

● University of Akron 

● Corrosion testing: AM materials, 

Accelerated testing, Microstructural 

analyses:  
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Program Status 

● Task 3.1: Components and Materials  
 

● Alloys: 625, H-120, RA330, AFA25, 601, H-230, H-214 

● Ejectors: cathode, anode and auxiliary  

● Metal Fittings: ceramic-to-metal joints 

● Mechanical and corrosion testing 
 

● Task 3.2 Manufacturing Processes 
 

 
 

 

 

 

 

 

 

● Cost analysis 

● Manufacturing Trials 
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• Additive Manufacturing (AM) • spin forming 

• Metal Injection Molding (MIM) • lost wax casting 

• Hot Isostatic Pressing (HIP) • other processes 



Program Status 

● Task 3.2:  Manufacturing Approach: Auxiliary Ejector 

 

 

 

 

 

 

 

 

 

● Manufacturing cost analysis: 

 140-160 MW fuel cell production 

 High throughput AM machines  

 Estimated 60% cost reduction 
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Advanced Materials and Mfg. Summary 

● Alloy down-selection completed 
● Mechanical testing of alloys completed 
● AM Manufacturing cost analysis: significant cost 

reductions for complex ejector parts  completed 
● Corrosion testing underway 

● Additive manufacturing trials starting  

 

● 2017 Activities 
● Design for additive manufacturing 

● Manufacturing/qualification: AM ejectors 

● 1000 hour fuel cell durability test with AM ejectors 

● Explore other advanced manufacturing processes 
 spin forming, Metal Injection Molding (MIM) 
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