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(REDOX) NETL-1 Project Objectives

* Purpose: Develop high power density, intermediate
temperature (600-650 °C) SOFC stacks for reliable
distributed generation.

* Objective: Improve performance/durability of IT-SOFC stacks
while reducing costs
* Scale-up of current stack module designs from 1 kW to 5 kW
* Determination of cell and stack degradation mechanisms
* Cell and stack optimization to improve long-term stability
* Cost analysis with a 20% manufacturing cost reduction
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(REDOX) Project Approach

 Understand degradation under operating conditions,
aided with accelerated test protocols

* Improve structure, manufacturing, and metrology for
cells as well as stack assembly procedures for
improved reliability

* Optimize stack designs with enhanced multi-physics
model (e.g., reduce thermal gradients and
mechanical stresses expected from increased stack
size)
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(REDOX) Electrode and Contact Degradation

Screen printed electrodes before and after aging at 650 °C for 100 h in air
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Polarization ASR of symmetric cells
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* Most cathodes and contacts show
~10% change after 100 h (“burn-in”)

* Infiltration improves initial
performance

* Test plan developed for >1000 h aging
of cathodes and contacts of interest



(REDOX) Anode Morphology Degradation

Ni cermet anode aged for 1,000 h at 650 °C in humidified 3% H, , then 1000 h aged in
humidified 3% CH,,

12 hinH,

* Evidence for Ni coarsening in SEM
cross-sections
* Future work:
* Quantitative analysis with FIB/SEM
planned
 Evaluate role of high steam
contents typical of reformate

E.D. Wachsman et al., Electrochem. Solid-State Lett.
10, B214 (2007).
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(REDOX) Gen. 1 (Ni-Cermet) Half-Cell Strength

- — = TGA confirmation of |
| | é full NiO reduction
v | —
& E— S
A | —+ g
w T |
2| £ \ 550 °C
& | l g o
L | TEU I —_—
i 2.0 L L
‘ ‘ ‘ Time [h]
RT, 4 pt RT,3pt 650 °C, 3 pt Room temperature 4 pt bend
 Half-cell test coupons show reproducible strength values "
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» Reduced and as prepared cells have similar strength ({ A
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* Failure strength of half-cells after long-term aging =
planned -
*Radovic and Lara-Curzio, Acta Materialia 52 (2004) 5747 Reduced As prep.
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(REDOX) Future Work with UMD Collaborators

Evaluation of in and out of plane thermo-

* Identification of critical processing defects chemical stresses in seal region (CALCE)
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(REDOX) Modeling Effort

* Add ability to assess mechanical stress due to thermal
gradients and phenomena such as creep at elevated
temperatures

e Optimize stack design through parametric studies
* modify cell geometry/composition and interconnect flow
field geometry)
* minimize pressure drops
e improve flow distribution
* minimize thermal gradients
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(REDOX) Quality Assurance Improvements

: Optical profilomet
Cell and materials - ptical profilometry
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Particle size analysis, bulk conductivity, XRD, etc.

Stack assembly
* Documentation

* Acoustic emissions and Distributed Force Sensing (DFS) during assembly
* Gas leak check before and after testing
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In situ stress monitoring of cells during

REDOX
(\) stack assembly

Y Axis

Distributed Force Sensing (DFS)

e Spatial stress monitoring real-time during stack
assembly

e Correlation of regions of high stress with mechanical
failure

e Acoustic emissions also monitored spatially for
mechanical failure location identification
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( REDOX

Stack Evaluation Instrumentation
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Suite of tools for evaluation of stack performance, such as:
* GC for mass balance and leakage evaluation
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* Impedance spectroscopy electrochemical characterization
* Individual cell voltage monitoring
* Inlet and outlet cathode and anode temperature

- Ildentification of key areas limiting initial and long-term performance

Redox Power Systems LLC —6/12/2017

12



(REDOX) Independent 3" Party Evaluation

3 separate 3-cell 10 cm x 10 cm stacks fabricated by Redox
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* Demonstrated reproducible power densities
* 4% higher performance in 3" party test
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(REDOX) Y5 kW Performance
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* Compressive stack design

* Extensive multi-physics modeling (e.g., structural, sealing, and fluidic flow field
design changes)

* Improvements to assembly process and initial results from modeling efforts = next

iteration = * performance
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(REDOX) Long-Term Cell Performance

Gen. 2 - porous anode SOFC (development sponsored by DOE-EERE)
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(REDOX) Summary of NETL-1 Efforts

* Investigations into degradation mechanisms

* Electrical and electrochemical performance of aged electrodes
and contacts

* Morphology changes in anode

 Stack assembly, testing, and design upgrades
 Distributed force sensing (DFS) in addition to previous sensing
capabilities
* Suite of stack evaluation tools
* Cell process improvements
* Manufacturing quality assurance protocols and documentation
* Metrology for critical process defect identification

* Demonstrated stack reproducibility and 0.5 kW power
* Achieved good long-term (250 h) cell voltage stability
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(REDOX) NETL-2 Project Objectives

* Purpose: Develop a high power density, reduction-oxidation
(red-ox) stable SOFC for lower cost distributed generation.

* Objectives: Improve the red-ox stability of Redox stacks
while reducing costs

* Scale-up and optimization of all-ceramic anode material processing and cell
fabrication for lower cost manufacturing

* Determine all-ceramic anode degradation mechanisms and optimize anode
compositions/geometries for enhanced red-ox stability

* Demonstration of a 1-2 kW, robust for red-ox cycling stack

* Demonstration >10% reduction in system cost and >30% reduction in O&M
costs compared to a system without a red-ox stable stack

verbose
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(REDOX) Red-Ox Stability Needed in SOFCs

Red-ox cycles can be expected during long-term fuel cell operation

* Interruptions in fuel supply
* Transient SOFC operation (e.g., shutdown)

Ni-cermet anodes prone to mechanical
failure during redox cycling

Micro.cracks

Journal of Power Sources 195 (2010) 5452-5467

~69 vol% expansion of Ni = NiO

6/12/2017
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(REDOX) All Ceramic Anode SOFC Performance

Button cell data
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* High power densities
e ~0.75W/cm? @ 550°C
e ~0.3W/cm?2 @ 450 °C
* Acceptable electronic conductivity
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(REDOX) Seal.and Gel.’l:l Cell (Ni-Cermet) Red-Ox
Cycling Stability

Gas crossover (anode «» cathode) measured during (Gen. 1 cell after test
Red-Ox cycling (650 °C)
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(REDOX) Seal Expansion During Red-Ox Cycling

Seal material exposed to red-ox cycling in a dilatometer

I 1 1 ] 1
7 ok 650°C i
255 3% a%
o H 2 wie’t-'
p— air 2
X 6.5 wet | Dy Welppy
- " air air -
g air
2
© 6o 5% y
H
x 2!
L wet
55k
1 1 1 1 1
160 180 200 220 240
Time [h]

~1% non-recoverable linear expansion after 3 red-ox cycles 2>

possible source of small increase in cross-over
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(REDOX) All-ceramic anode redox cycling

UMERC porous anode support Redox half-cell conductivity measurements at 650 °C
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( REDOX

Long-Term All Ceramic SOFC Performance
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(REDOX) All-Ceramic Half-Cell Scale-Up

10 cm x 10 cm half cell

50% fracture strength of Gen. 1 (Ni-cermet)

half-cells (4 pt. bend)

—> strong enough for handling and SOFC
testing

In situ bend bar test rig (UMERC)

Alumina 3-point Universal Test Machine Atmosphere/
bend fixture temperature control for
mechanical tester
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(REDOX) Cost Modeling

25 kWe SOFC System Cost
Tape Casting and Cutting of Electrolyte and Substrate
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Pressing form 4600 ¥ Fuel Processing Subsystem -
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Csshng Move from
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alter eacn
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4300

$200
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Anode Cathode Laser Cutting $100
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(spraying) printing Cells s
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Mowfom| [ Movefom Mowfom\ /More fon Vo fon Manufacturing Cost Analysis of Stationary Fuel Cells,
Reck to seto Rack to Rack to Strategic Analysis
Belt Rack Belt

* Process flow model with associated costs
* Monte Carlo simulation (output of model will be a probability distribution of costs)
* Discrete event simulator

* Evaluate impact of component failures over system lifetime

* Aid in development of warranty and related business model

* Estimates of natural gas disruptions
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( REDOX

Identification of All-Ceramic Failure Modes

Ishikawa, or fish-bone, diagram (CALCE)
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(REDOX) NETL-2 Summary

 |dentified stability of all-ceramic anode cell components stability
in red-ox cycles
* All-ceramic half-cell exhibits minimal in-plane conductivity degradation
after multiple red-ox cycles

e Cell seal shows low increase in leakage with 20 red-ox cycles
* Conventional Ni-cermet cell cracks and leaks in less than 3 red-ox cycles

* Key all-ceramic anode degradation modes identified and under
evaluation

* Ishikawa diagram maps out key degradation modes
* Metal catalyst infiltrate coarsening Ni:GDC ratio change

 Demonstrated capability to fabricate 10 cm x 10 cm all-ceramic

anode half-cell
e Strength half of Gen. 1 Ni-cermet cells, sufficient for SOFC testing

* Cost model for all-ceramic anode under development
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