Wave Liquefaction™: New Markets for Coal
A novel REMS approach to manufacturing fuels, chemicals, and materials from coal, natural gas, and other feedstocks.

Wave Liquefaction™ combines gaseous and solid hydrocarbons to cleanly and efficiently produce liquid fuels, chemicals and advanced materials.

With non-emissive electricity sources, and no CCS, lifecycle CO₂ emissions would be 10% less than for transportation fuels from conventional oil refining.

ABSTRACT
Wave Liquefaction™ technology is a novel approach to coal liquefaction. With little to no process CO₂ emissions, high thermal efficiency, and low capital and operating costs, Wave Liquefaction™ process enables production of cost-competitive liquid and solid products directly from coal with lower direct and lifecycle greenhouse gas emissions than conventional petroleum refining, without carbon capture. Lifecycle greenhouse gas emissions can be reduced further with use of coal/biomass blends.

IMPACT
United States holds more than 27% of the world’s coal reserves. Development of truly clean, efficient, and economically viable coal utilization pathways that unlock the true value of coal and overcome economic and environmental challenges of the conventional technologies is of strategic importance.

Advanced coal-to-liquids technologies, such as Wave Liquefaction, can be cost-effectively deployed at a range of scales directly in the communities affected by the downturn in the coal industry targeting established markets and creating new ones. Their development will dramatically improve energy security, reduce coal environmental footprint, and promote job creation and economic development in the regions that need them most.

KEY ADVANTAGES
- modular, small-scale deployment
- rapid, efficient processing
- high feed and product flexibility
- virtually zero CO₂ emissions
- clean (no SMR) hydrogen production

REPRESENTATIVE COALS

<table>
<thead>
<tr>
<th>Feedstock Type</th>
<th>Coal Ash</th>
<th>Liquid yield (wt%) with hydrogen (% wt)</th>
<th>Methane yield (wt%) with hydrogen (% wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pocahontas #3 (VA)</td>
<td>67%</td>
<td>53%</td>
<td>31%</td>
</tr>
<tr>
<td>Illinois #6 (IL)</td>
<td>72%</td>
<td>61%</td>
<td>42%</td>
</tr>
<tr>
<td>Victoria Brown (Aus.)</td>
<td>76%</td>
<td>52%</td>
<td>37%</td>
</tr>
<tr>
<td>Blind Canyon (UT) / Pine</td>
<td>52%</td>
<td>45%</td>
<td>34%</td>
</tr>
<tr>
<td>Beulah (ND)</td>
<td>29%</td>
<td>30%</td>
<td>22%</td>
</tr>
<tr>
<td>Wyodak (WY)</td>
<td>67%</td>
<td>61%</td>
<td>42%</td>
</tr>
<tr>
<td>H Quest #1 (Russia)</td>
<td>66%</td>
<td>71%</td>
<td>52%</td>
</tr>
<tr>
<td>Pittsburgh #8 (PA)</td>
<td>56%</td>
<td>65%</td>
<td>47%</td>
</tr>
<tr>
<td>Victoria Brown (Aus.)</td>
<td>76%</td>
<td>52%</td>
<td>37%</td>
</tr>
</tbody>
</table>

WIDE RANGE OF APPLICATIONS
- Coal conversion targeting crude oil and fuels, chemicals, and materials (activated carbon, synthetic graphite, carbon fiber).
- Natural gas conversion to higher-value chemicals and specialty carbon materials.
- Heavy oil upgrading opportunities.

PROCESS HIGHLIGHTS
- rapid, targeted heating
- low gas temperatures
- ambient pressure
- high process throughput (30 kg/hr at engineering scale)
- small reactor footprint (1 liter volume at engineering scale)
No need for thick reactor walls or costly exotic alloys and refractory materials.

WIDE RANGE OF APPLICATIONS
- Coal conversion targeting crude oil and fuels, chemicals, and materials (activated carbon, synthetic graphite, carbon fiber).
- Natural gas conversion to higher-value chemicals and specialty carbon materials.
- Heavy oil upgrading opportunities.

DEVELOPMENT TIMELINE

2009-2011 DARPA funding supported construction of a prototype reactor at PNNL.
2011-2013 H Quest supported construction of a laboratory-scale system at PNNL.
2014-2017 H Quest Vanguard, Inc started commercialization in Pittsburgh, PA.
Since 2010, the process has been scaled-up 100x times.
Last step to commercialization: 30 kg/hr pilot system.

MODULAR SCALE-UP STRATEGY

[Diagram of modular scale-up strategy]