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( Project Objective & Scope )

o Investigate the fundamental creep cracking mechanism of the Gr.91 alloy
at advanced power generation operating conditions to establish a link
between composition, processing parameters, phase stability,
microstructure, and creep resistance using the ICME approach.

Anticipated Project Benefits

o Development of a model that will improve the creep resistance of Gr.91
alloys for use in advanced fossil-fueled power generation systems and
other applications.

o Increase in fossil-fueled power generation efficiency and reduced
emissions.
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Effective Communications

Introduction
o Gr. 91 steel is primarily used in high-temperature facilities such as fossil-
fired power plants, and steam generators of nuclear power plants due to
high creep strength.

o The main creep strengths of this steel comes from its precipitates such as
M,;C4, MX, Z-Phases, and Laves-Phases.
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Fe-Fe3C phase diagram with corresponding regions of a fusion weld

( Coarsening of Precipitates

o M,;Cq (red) precipitates coarsen quickly after long periods of creep
exposure. The fine MX phase (blue dots) has very low coarsening rate
and is able to pin grain boundaries and dislocations

o High Pre-Weld Tempering Temperature (HTT) - M,;C¢ nucleate at
grain boundaries. They “melt” during welding and then nucleate back
within the grain matrix. They coarsen within grain matrix during PWHT
and creep test.

o Lower Pre-Weld Tempering Temperature (LTT) - M,;C¢ precipitates
nucleate at grain boundaries. They “melt” during welding but do not
nucleate back within the grain matrix. They coarsen within the grain
boundaries during PWHT and creep.
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parameters can be set arbitrarily thus
making the material act differently at
different temperatures.
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