MFIX-DEM Enhancement for Industrially-Relevant Flows

2017 Crosscutting Research Project Review

Pittsburgh, PA March 20-23, 2017

Project Leads:Dr. Ray Cocco (PSRI, co-PI)Dr. Ray Grout (NREL, co-PI)Prof. Thomas Hauser (Univ. CO, co-PI)Prof. Christine Hrenya (Univ. CO, PI)

Project Team

University of Colorado Chemical & Biological Engineering DEM modeling of granular and gas-solid flows, MFIX

Prof. Christine Hrenya Dr. William Fullmer Dr. Peiyuan Liu

University of Colorado Research Computing High-performance computing, CFD

Prof. Thomas Hauser

Dr. Dane Skow

Tim Brown

NREL Computational Science *High-performance computing, CFD*

Dr. Ray Grout Dr. Hari Sitaraman V

Deepthi Vaidhynathan

Kales Dr. Allan Issangya

Aaron Holt PSRI

Industrial Application and Experiments of Particle Flows

Motivation

Fullmer & Hrenya (Annu. Rev. Fluid Mech. 2017)

Motivation:

DEM application toward industriallyrelevant systems

Potential significance of the results of the work

• Direct: Aid in design/optimization of industrial components

Phase I Statement of Project Objectives (SOPO)

Task 1 - Project Management and Planning

Task 2 - Profiling MFIX DEM

Task 2a: Benchmark serial MFIX DEM

Task 2b: Benchmark parallelized MFIX DEM

Task 3 - Determine Optimization Frameworks

Task 4 - Perform optimization and vectorization of serial DEM

Task 4a: Employ optimization techniques

Task 4b: Verify enhanced DEM code for numerical correctness

Task 5 - Optimize and enhance hybrid (MPI + accelerator) DEM

Task 5a: Implement hybrid parallelization method (MPI + OpenMP)

Task 5b: Use extensive parallel profiling to optimize parallel code

Task 5c: Compare enhancements on multiple Xeon/Xeon Phi architectures

Task 6 - Industrially Relevant Problem

Task 6a: Survey of PSRI member companies

Task 6b: Experiments of Interacting Nozzles

Task 7 - Uncertainty Quantification

Task 7a: Test Problem

Task 7b: Challenge Problem

Task 7c: Industrially Relevant Problem

Milestone 2: Benchmark Cases

Settling

Square tumbler

Fluidized bed

Milestone 2 report (submitted to DOE)

100M Particle Settling – Weak Scaling

- Locality-based Particle Sorting improves neighbor search
- State-based Particle sorting improves vectorization
- Masking improves vectorization

Milestone 5 report (submitted to DOE)

Phase I Statement of Project Objectives (SOPO)

Task 1 - Project Management and Planning

Task 2 - Profiling MFIX DEM

Task 2a: Benchmark serial MFIX DEM

Task 2b: Benchmark parallelized MFIX DEM

Task 3 - Determine Optimization Frameworks

Task 4 - Perform optimization and vectorization of serial DEM

Task 4a: Employ optimization techniques

Task 4b: Verify enhanced DEM code for numerical correctness

Task 5 - Optimize and enhance hybrid (MPI + accelerator) DEM

Task 5a: Implement hybrid parallelization method (MPI + OpenMP)

Task 5b: Use extensive parallel profiling to optimize parallel code

Task 5c: Compare enhancements on multiple Xeon/Xeon Phi architectures

Task 6 - Industrially Relevant Problem

Task 6a: Survey of PSRI member companies

Task 6b: Experiments of Interacting Nozzles

Task 7 - Uncertainty Quantification

Task 7a: Test Problem

Task 7b: Challenge Problem

Task 7c: Industrially Relevant Problem

Need for CFD-DEM Validation Data

NETL/PSRI Challenge Problem III

(Li et al., Chem. Eng. Sci., 2012)

NETL Small-Scale Challenge Problem I

(Gopalan et al., *Powder Tech.*, 2016)

Horiz. Jet Experiments: Unit and Materials

Semi-circular Fluidized Bed with Side Jets

Characteristics:

• W = 11.25 in • $h_{bed} \sim W$ • $d_j \sim 4$ mm • $U \sim U_{mf}$ ~ 30-150 cm/s • $U_j \sim 200$ m/s

- 6.0 mm plastic: $N_p \sim 6 \times 10^4$
- 3.0 mm ceramic: $N_p \sim 4 \times 10^5$ 1.6 mm mix: $N_p \sim 3 \times 10^6$
- 1.5 mm glass: $N_p^r \sim 4 \times 10^6$
- 1.0 mm ceramic: $N_p^r \sim 1 \times 10^7$
- 0.8 mm glass: $N_p \sim 3 \times 10^7$

Horiz. Jet Experiments: Particle Characterization

Methods

Results

Horiz. Jet Experiments: Pressure Drop

DP Results

 U_{mf} = 135 cm/s Bed operated at: $U \sim 90\%$ & 110% of U_{mf}

Horiz. Jet Experiments: HSV and PT

Raw HSV Data

Particle Tracking (PT) Analysis

Phase I Statement of Project Objectives (SOPO)

Task 1 - Project Management and Planning

Task 2 - Profiling MFIX DEM

Task 2a: Benchmark serial MFIX DEM

Task 2b: Benchmark parallelized MFIX DEM

Task 3 - Determine Optimization Frameworks

Task 4 - Perform optimization and vectorization of serial DEM

Task 4a: Employ optimization techniques

Task 4b: Verify enhanced DEM code for numerical correctness

Task 5 - Optimize and enhance hybrid (MPI + accelerator) DEM

Task 5a: Implement hybrid parallelization method (MPI + OpenMP)

Task 5b: Use extensive parallel profiling to optimize parallel code

Task 5c: Compare enhancements on multiple Xeon/Xeon Phi architectures

Task 6 - Industrially Relevant Problem

Task 6a: Survey of PSRI member companies

Task 6b: Experiments of Interacting Nozzles

Task 7 - Uncertainty Quantification

Task 7a: Test Problem Task 7b: Challenge Problem Task 7c: Industrially Relevant Problem

CFD-DEM+UQ: Base Case

CFD-DEM Model Description

- Rectangular geometry
- Point sources for jets
- Incompressible
- No shear- or particleinduced turbulence models
- Uniform inflow
- No-slip wall BC for gas
- $\Delta x \sim 2 d_p$

CFD-DEM+UQ: PIRT

Parameter Identification and Ranking Table

	Input Uncertainties				SRQ Ranking		
Parameter	lower bound	base case	upper bound	type	P_{iL}	$P_{i,R}$	ΔΡ
Bed							
U (cm/s)	136.9	146.7	156.5	e	100.0	100.0	100.0
U_{iL} (m/s)	189.2	200.9	212.5	е	2.2	1.1	1.2
$U_{i,R}$ (m/s)	182.8	194.4	205.9	e	0.5	4.9	1.0
h_{bed} (cm)	28.8	29.1	29.4	е	0.3	1.1	29.9
$A (cm^2)$	333.1	340.4	347.8	e	-	-	-
Left Jets							
$A_{i,L}$ (cm ²)	0.1168	0.1171	0.1174	e	-	-	-
$y_{i,L}$ (cm)	5.067	5.146	5.225	e	0.0	0.0	0.0
$z_{i,L}$ (cm)	1.588	1.667	1.746	е	0.0	0.0	0.0
d_{iL} (cm)	-0.3175	0.000	0.3175	e	-	-	-
Right Jets							
$A_{i,R}$ (cm ²)	0.1168	0.1171	0.1174	e	-	-	-
$y_{i,R}$ (cm)	5.377	5.456	5.535	e	0.0	0.0	0.0
$z_{i,R}$ (cm)	1.667	1.746	1.826	e	1.5	18.2	2.1
$d_{i,R}$ (cm)	-0.3175	0.000	0.3175	e	-	-	-
Particle-phase Properties							
$d_p(\mu m)$	5761	5924	6006	а	1.8	4.9	6.8
$\phi(-)$	0.931	0.943	0.948	а	0.0	0.0	0.0
$\rho_p (\mathrm{g/cm^3})$	1.042	1.0435	1.045	e	0.2	0.3	1.2
$e_{pp}(-)$	0.819	0.948	0.990	а	3.3	9.4	0.6
$\mu_{pp}(-)$	0.338	0.482	0.581	а	2.8	6.3	2.2
$e_{pw}(-)$	0.905	0.948	0.970	а	0.0	1.0	0.1
$\mu_{pw}(-)$	0.338	0.482	0.581	а	0.4	0.6	2.7
Gas-phase Properties							
$\rho_g (g/cm^3 \times 10^3)$	1.1104	1.1697	1.2290	e	7.3	10.6	3.3
$\mu_g (g/cm-s \times 10^5)$	1.7	1.8	1.9	e	2.3	2.9	0.5

Empirical CFDs of the *experimental results (red line)* with the *CFD-DEM propagated UQ in the SRQs (black lines)*

Phase-II CFD-DEM+UQ: Very Preliminary Results

19

Phase-II Outlook

Task 8: Very, Very Small Scale Problem $N_p \sim O(3)$

Task 9: Countercurrent Air Flow Stripper Unit

thank you for your attention

