High Temperature High Velocity Direct Power Extraction Using an Open-Cycle Oxy-Combustion System

PI: Norman Love

NASA Center for Space Exploration and Technology Research The University of Texas at El Paso 500 W. University Ave. El Paso, Texas 79968 Email: ndlove@utep.edu

DoE Award Number: DE-FE-0024062 **Period of Performance:** October 2014 to June 2017

2017 CROSSCUTTING RESEARCH & RARE EARTH ELEMENTS: Portfolio Review Meeting Pittsburgh, PA March 23, 2017

A Giant Leap Forward

research.utep.edu/cSETR

Project Overview

Research Objectives

The overarching goal is to demonstrate the feasibility of a GCH_4/GO_2 combustor and nozzle to enable supersonic direct power extraction via MHD.

Phase 1 (November 2014 to December 2015)

Research Objective 1: Design and fabricate a laboratory-scale combustor and nozzle facility for open-cycle MHD.

Milestone 1: Complete design of system cooling Milestone 2: Complete design of components (injector, combustor, nozzle) Milestones 3 and 4: Fabrication of finalized system components

Phase 2 (December 2015 to December 2016)

Research Objective 2: Investigate partially premixed flame stability characteristics

Milestone 5: Flame testing to characterize injector and combustor performance

Milestone 6: Systematically characterize flame stability characteristics

Ongoing (January 2017 to June 2017)

Design and development of a 1MW scale MHD combustor

DE-FE-0024062 HIGH TEMPERATURE HIGH VELOCITY DIRECT POWER EXTRACTION USING AN OPEN CYCLE OXY-COMBUSTION SYSTEM

- Project Overview
- Research Team
- Introduction
- Technical Approach
- Results
- 1-MW Combustor Development
- Future work
- Impact
- Summary and Conclusions
- Acknowledgements

- Project Overview
- Research Team
- Introduction
- Technical Approach
- Results
- 1-MW Combustor Development
- Future work
- Impact
- Summary and Conclusions
- Acknowledgements

Research Team

Principal investigators

Dr. Norman Love Dr. Ahsan Choudhuri

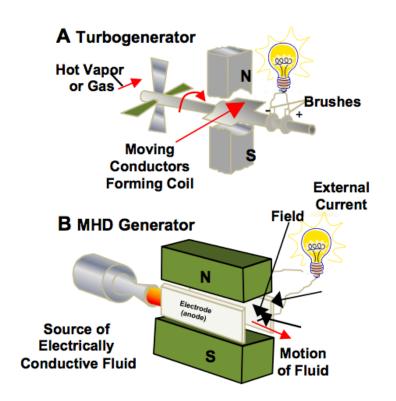
Ph.D. Research Assistants

Luisa Cabrera (Accepted a position at Intel) Manuel Hernandez (GE Power)

MS Research Assistants

Jad Aboud (Currently pursuing PhD at UTEP) Omar Vidana (Toyota) Brian Lovich

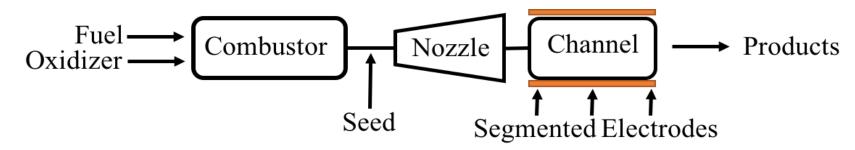
ME UG Research Assistants


Analuisa Garcia (LMC) Gabriella Enriquez (Chrysler)

- Project Overview
- Research Team
- Introduction
- Technical Approach
- Results
- 1-MW Combustor Development
- Future work
- Impact
- Summary and Conclusions
- Acknowledgements

- Development of Advanced Energy Systems (AES) is critical
- Combustion processes empower our world. However, combustion devices exhibit low conversion efficiencies and emit CO₂ into the atmosphere
- Combustion researchers are faced with
 - Creating more efficient combustion systems
 - Reducing the impact to the environment, which includes CO₂ emissions
- MHD shows promise of making Oxy-Combustion (a CCS technique) an advantageous technology for power generation
 DE-FE-0024062 HIGH TEMPERATURE HIGH VELOCITY DIRECT POWER EXTRACTION USING AN OPEN CYCLE OXY-COMBUSTION SYSTE

MHD direct power extraction may enhance conversion efficiencies of current power cycles.

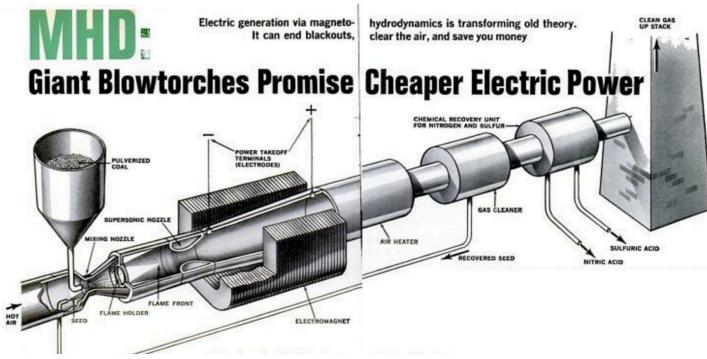

$$P \propto \sigma B^2 V^2$$

Parameter	Symbol
Conductivity	σ
Plasma/Gas Velocity	V
Magnetic Field Strength	В

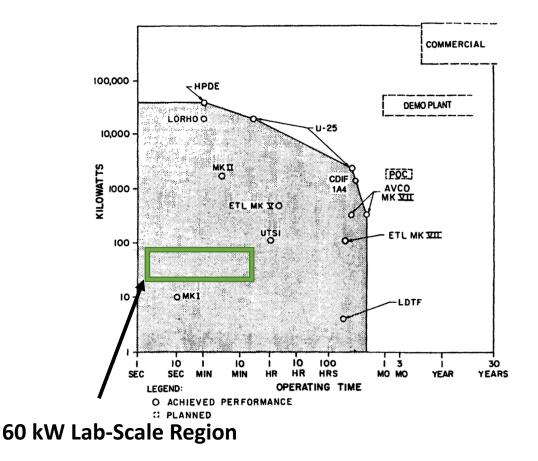
In this project the following is used:

Oxy-Fuel combustion: Enhances electrical conductivities due to higher flame temperatures

Integration of supersonic nozzle: Energy extraction potential increases with Mach number up to 2.5



• Early and more recent MHD research has focused on subsonic MHD flows of oxy-enriched preheated air and pulverized coal combustion


	Avco Mk I	Avco Mk II	General Electric Research Laboratory	General Electric Research Laboratory	General Electric Research Laboratory	Westinghouse Model 2	Westinghouse Model 1
Working fluid	Argon and arc heater	Ethanol or keosene and oxygen	Nitrogen and plasma jet heating	Propane and oxygen	Hydrogen and air	Diesel and oxy- enriched air	n-Heptane and oxy- enriched air
Temperature, K	2800	3000	3200	2300	2550	2800-3000	2570
Gas velocity	Mach 0.7	1000 m/s	700 m/s	568 m/s	Mach 0.8	500-860 m/s	757 m/s

Source: Sutton, G., and Sherman, A. Engineering Magnetohydrodynamics, McGraw-Hill, New York, 1965.

- In the 1970s, MHD power cycles used preheated oxy-enriched air and pulverized coal
- Our aim is to use methane-oxygen combustion

- Design and the system integration of a laboratory-scale prototype
- Combustor uses a coaxial swirl injector, combustor and nozzle system to generate high temperature gas moving at Mach 2
- Supersonic velocities of seeded combustion plasmas may lead to enhanced power output in MHD generators

Carlson C. P. Pian and Robert Kessler. "Open-Cycle Magnetohydrodynamic Power Generators", Journal of Propulsion and Power, Vol. 15, No. 2 (1999), pp. 195-203

- Project Overview
- Research Team
- Introduction
- Technical Approach
- Results
- 1-MW Combustor Development
- Future work
- Impact
- Summary and Conclusions
- Acknowledgements

Year 1

- Task 1: Design a DPE system for high temperature flows
 - Water cooled convective cooling jacket
 - Milled cooling channels
 - Wall material considerations: copper or aerospace-grade super alloy structures
- Task 2: Design a DPE system for supersonic flows of M > 1.8
 - Investigate cryogenic LOX/LCH4 igniter injector: coaxial swirl injection with tangential orifices
 - Extend nozzle geometries to meet the above supersonic criterion
 - Generate underexpanded jet flames

Year 2

- Task 3: Component and System Level Testing
- Task 4: Systematically Characterize Flame Stability Characteristics

Combustor Design

- Design Requirements
- •Characteristic Geometry

Swirl Coaxial Injector

- Orifice geo.
- Interfaces
- Optimization

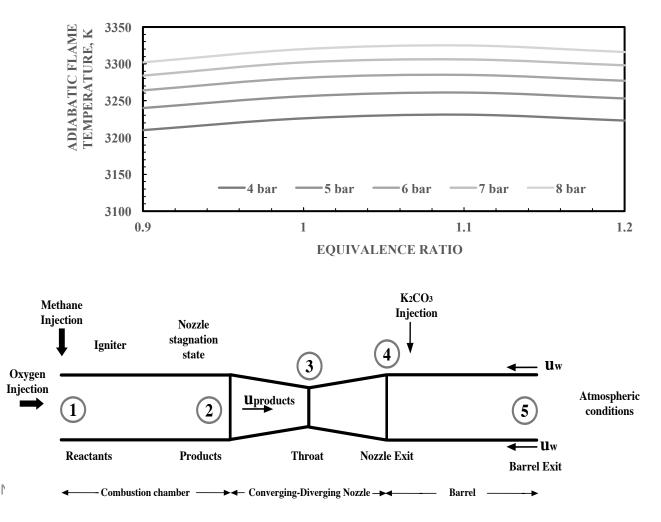
Numerical models •FEA

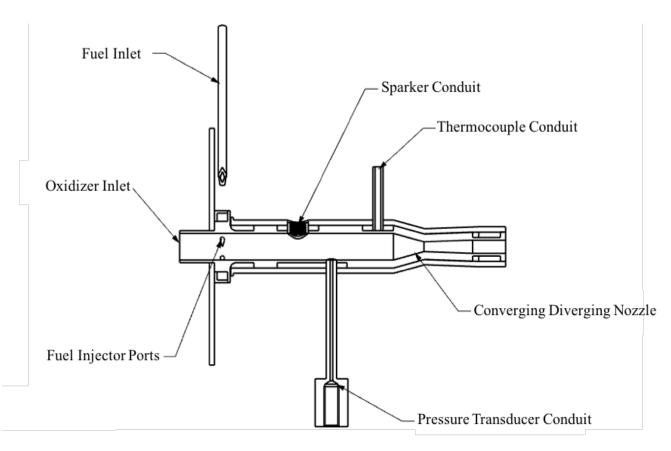
- •Combustion CFD
- •Coupled Heat Transfer Model

Interface Development

- •Feed System integration
- •Combustor
- manufacturing

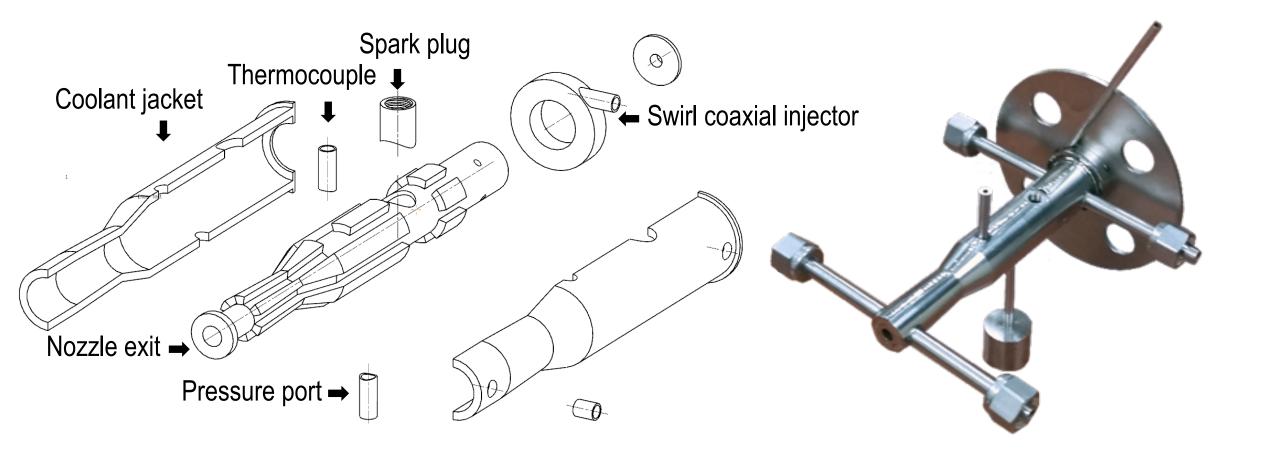
Testing Operations


- Safety checks
- Experiments
- Data post Processing


Combustor Scaling Study

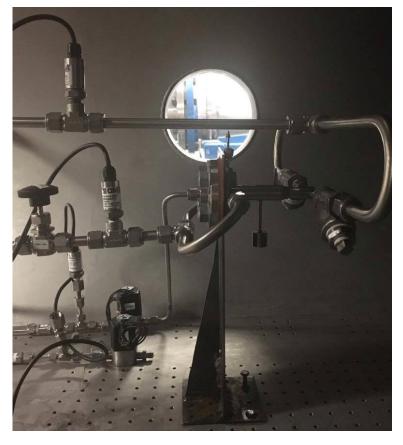
DE-FE-0024062 HIGH TEMPERATURE HIGH VELOCITY DIRECT POWER EXTRACTION USING AN OPEN CYCLE OXY-COMBUSTION SYSTEM

60 kW Combustor


- Flame temperature/combustion pressure study yielded operational parameters of 4-8 bar
- Thermal protection system based on regenerative cooling in rocket engines
- Models developed for swirl-coaxial injector optimization
- Computational combustion model compared exit parameters to isentropic flow equations
- Finite element study using superalloy Inconel 718
 - Higher strength of material/ 3D printing cap.

• CH₄/O₂ DPE Combustor

- Coaxial tangential swirl injector
- Fuel-rich to stoichiometric conditions
- Combustion pressures: 5-9 bar
- Nozzle exit conditions of supersonic velocities (near Mach 2) and 2800 K
- Cooling system for long-burn times
- Inconel 718

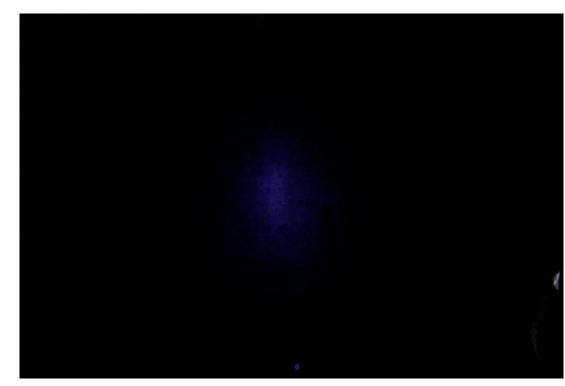


Exploded View

Combustor Setup

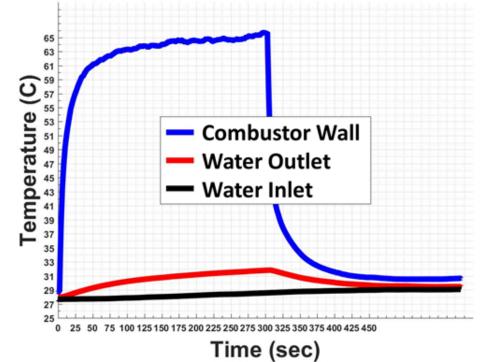
DE-FE-0024062 HIGH TEMPERATURE HIGH VELOCITY DIRECT POWER EXTRACTION USING AN OPEN CYCLE OXY-COMBUSTION SYSTEM

Test Parameter		Units
Chamber Pressure	760	kPa
Mass Flow Rate	4.5	g/s
Minimum test time	2	S
Maximum test time	300	S
Minimum O/F	2	-
Maximum O/F	4	-
Total Tests	60	-
Total burning time	1750	S

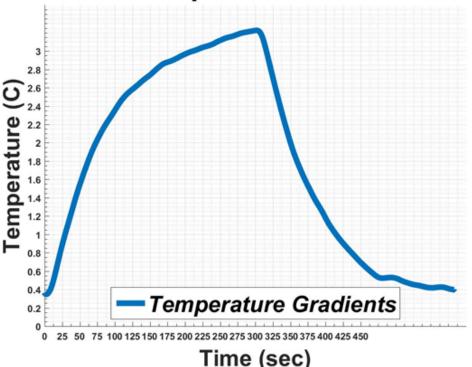


- Project Overview
- Research Team
- Introduction
- Technical Approach
- Results
- 1-MW Combustor Development
- Future work
- Impact
- Summary and Conclusions
- Acknowledgements

Results



O/F = 4


Results

Test Parameters	
Operating chamber pressure (psi)	110
Test time (s)	300
Oxidizer to Fuel Ratio	4

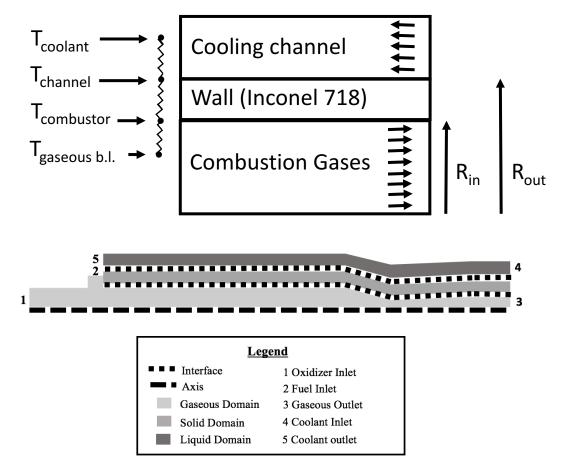
Cooling and chamber Wall Temperature

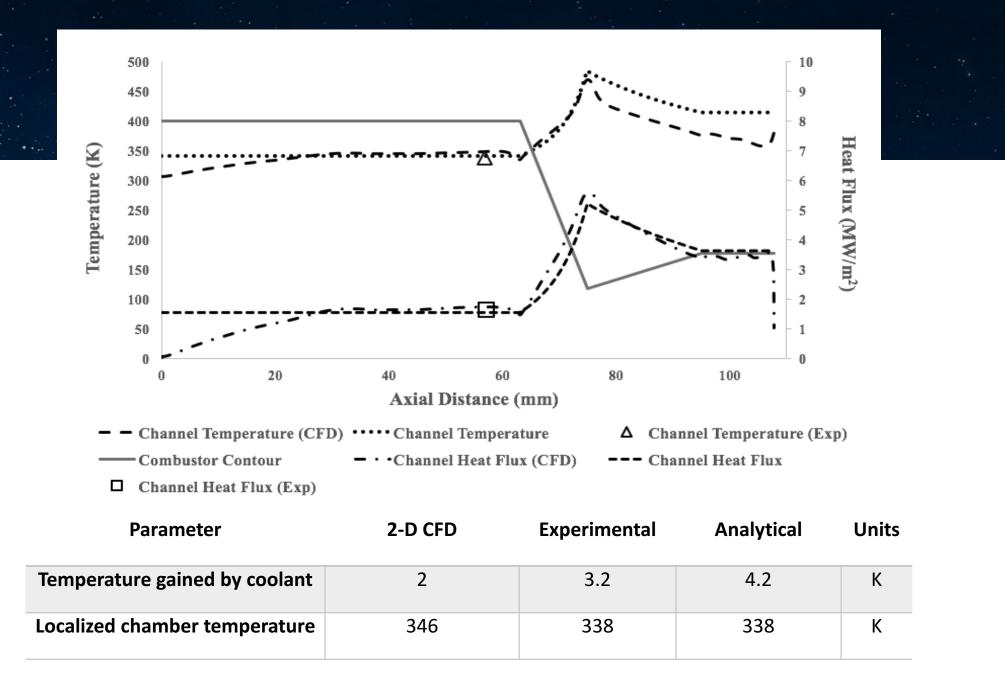
Water Temperature Differences

Results

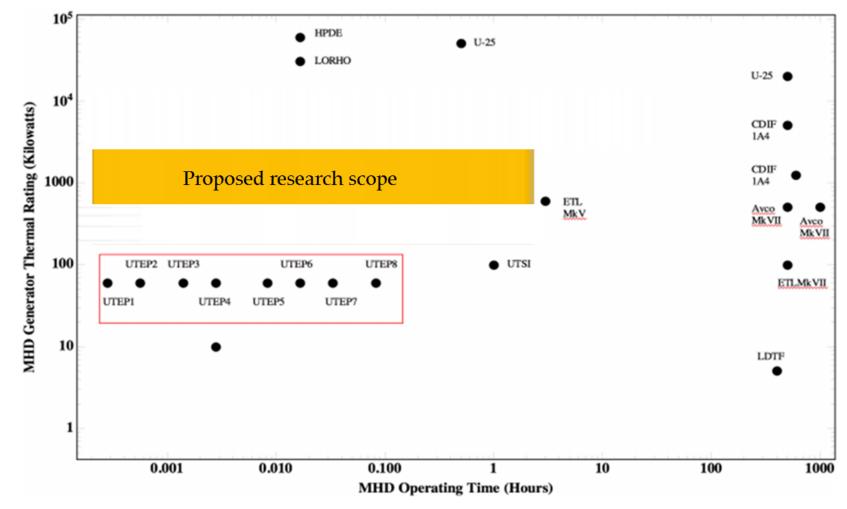
Thermal Model

• Purpose: Establish design methodology for high heat flux systems (1 MW combustor)


Analytical


- 1-D approach to conduction equation
- Thermal resistance system

Numerical


- Fully-coupled 2-D CFD model
 - Non premixed combustion
 - Wall conduction
 - Channel flow
- Results compared to experimental data

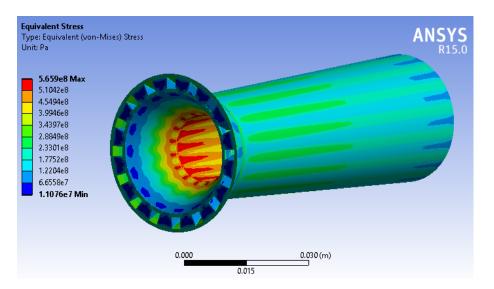
- Project Overview
- Research Team
- Introduction
- Technical Approach
- Results
- 1-MW Combustor Development
- Future work
- Impact
- Summary and Conclusions
- Acknowledgements

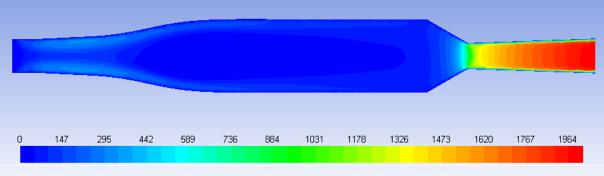
Requirements

2800 K (exit) Mach 1.9 (exit) 1 MW thermal input

Scaling Non-Dimensional Parameters

Schmidt number Prandtl number Nusselt number Mach number Specific heat ratio Momentum Flux Ratio


Preliminary Design (units in mm) 390 21 22 **Cooling Channels** 2 mm hydraulic diameter


Parameter name	Symbol	Value	Units
Equivalence ratio	φ	1.1	
Total mass flow rate	\dot{m}_{total}	0.083	kg/s
Minimum total injection pressure	p _{inj}	123	psi
CH ₄ temperature	Τ _f	298	К
CH ₄ density	$ ho_{ m f}$	0.67	kg/m ³
CH ₄ mass flow rate	\dot{m}_f	0.0180	kg/s
CH ₄ volumetric flow rate	, V _f	1610	slpm
O ₂ temperature	T _{ox}	298	К
O ₂ density	ρ _{ox}	1.297	kg/m ³
O ₂ mass flow rate	<i>m</i> _{ox}	0.0653	kg/s
O ₂ volumetric flow rate		3000	slpm

CFD Investigation

Velocity	
CEA: 1980 m/s	
ANSYS: 1950 m/s	
Error: 1.5%	

Temperature CEA: 2920 K ANSYS: 2810 K Error: 4.1%

Contours of Velocity Magnitude (m/s)

FEA Stress Investigation Thermal + Mechanical

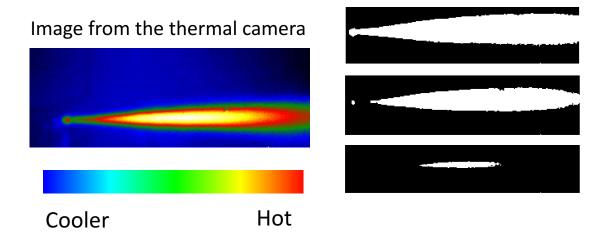
Analytical Method: 570 Mpa (maximum) Numerical Method: 565 Mpa (maximum)

Factor of Safety

1MW: 1.75 60 kW: 1.5

$$S_t = \frac{(p_{co} - p_g)r}{t} + \frac{Eaqt}{2(1 - \nu)k}$$

- Project Overview
- Research Team
- Introduction
- Technical Approach
- Results
- 1-MW Combustor Development
- Future work
- Impact
- Summary and Conclusions
- Acknowledgements


Future Work

- 1-MW combustion system
 - Cooling channel aspect ratio optimization
 - CFD
 - Placement of temperature/pressure sensors
 - Manufacturing
 - Analysis of combustion stability
 - Seed injection parameters
 - Design of feed system interfaces

Future Work

- Flame Temperature Measurement
 - Heat flux estimate and verification
 - Thermal Camera
 - High Temperature Pyrometer
 - Integration of monochromator
 - Estimation of flame emissivity

- Project Overview
- Research Team
- Introduction
- Technical Approach
- Results
- 1-MW Combustor Development
- Future work
- Impact
- Summary and Conclusions
- Acknowledgements

Impact

Collaborative experiences at NETL in Albany, OR

- Manuel J. Hernandez (Summer 2015)
- Brian Lovich (Summer 2016)

Awards and Honors

- Selected for AIAA Sci-Tech 2016 Terrestrial Energy Best Paper Award
- Ph.D. Research Assistants attended the 2016 Combustion Energy Frontier Research Center Combustion Summer School at Princeton University

Students Graduated

- Manuel J. Hernandez (PhD in Mechanical Engineering)
- Jad G. Aboud (MS in Mechanical Engineering)
- Omar Vidana (MS in Mechanical Engineering)

Impact

Publications

- Cabrera, L., Choudhuri, A., and Love, N., "Heat Transfer Characterization Methodology for an Oxy-Fuel Direct Power Extraction Combustion System," (Under Review)
- Luisa A. Cabrera, Jad G. Aboud, Manuel J. Hernandez, Brian Lovich, Ahsan Choudhuri and Norman D. Love. "Heat Transfer Characterization of a High Heat Flux Oxy-Fuel Direct Power Extraction Combustor", 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, (AIAA 2017-1606)
- Manuel J. Hernandez, Luisa A. Cabrera, Omar Vidana, Mariana Chaidez, and Norman D. Love. "Design of a Supersonic Oxy-Methane Combustor for Direct Power Extraction", 54th AIAA Aerospace Sciences Meeting, San Diego, CA, AIAA 2016-0243
- Omar Vidana, Mariana Chaidez, Brian Lovich, Jad Aboud, Manuel J. Hernandez, Luisa A. Cabrera, andNorman D. Love. "Component and System Modeling of a Direct Power Extraction System", 54th AIAA Aerospace Sciences Meeting, AIAA SciTech, (AIAA 2016-0990)
- M. Hernandez, L. Cabrera, A. Choudhuri, and N. Love. Flame stability of Supersonic Oxy-Methane Flames for Direct Power Extraction, 2016 AIAA Propulsion and Energy Forum and Exposition.
- 2015 and 2016 Southwest Emerging Technologies Symposiums Technical papers (4)

- Project Overview
- Research Team
- Introduction
- Technical Approach
- Results
- 1-MW Combustor Development
- Future work
- Impact
- Summary and Conclusions
- Acknowledgements

Summary and Conclusions

- A coaxial swirl injector, 60 kW combustor, and nozzle have been developed and constructed for use in direct power extraction systems
 - Component and system modeling efforts of the 60kW combustor has been documented
 - System integration in the MHD experimental facility was completed
- Computational models for heat transfer characterization were developed and compared to experimental data
- Preliminary design parameters and analysis for 1-MW combustor have been developed
 - Heat transfer optimization of 1-MW combustor are underway

Acknowledgements

This research is supported by the US Department of Energy, under award DE-FE-0024062 (Project Manager Jason Hissam). However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the view of the Department of Energy.

Thank you