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& Energy production from fossil fuels relies heavily on clean water

Energy-Water Nexus

> Clean water for boiler steam, FGD unit & cooling — Water usage is dominated by
cooling needs.
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& Drifit Steam
3,891 gpm
Turbine
520 MW

Generator

Warm Water
187,600 gpm

Conidensate '

Steam
Condenser

Cool Water

Make-up Water Blowdown Water
5,188 gpm 1,297 gpm Ref: www.netl.gov

> An estimated % gallon of water is consumed per kWh of electric power produced

> Water needs will increase significantly due to carbon capture (CC)

o 30% increase in water consumption due to CC in pulverized coal power plant

- Los Alamos Ref: A. Delgado, M.S. Thesis, MIT, 2012
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\% Water Management

Growing water and energy needs, and fresh water scarcity
mandate water conservation, treatment & re-use

% Lost water recovery

> Evaporation from cooling towers and flue gas Flue Gas (11.9%)

o Difficult to capture: Low partial/total pressure Other Losses (5%)

0 i ’ o
o 6to 13 % water vapor depending on Heatin (100%) heatto cooling (46.3%)

the coal feedstock and FGD

o Potential to supply 10 to 33% of boiler
make-up water

% Electricity

o Water vapor recovery will improve efficiency ) et

by latent and sensible heat recovery

> FGD & cooling tower blowdown water treatment & re-use

% Alternate water resources: Extracted brines and RO reject stream

> Require extensive processing to produce power plant quality water

o High salinity brine; salinity ranging from > 40,000 mg/L to >300,000 mg/L
- Los Alamos
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& Reverse osmosis — Most energy efficient for desalination

High Salinity Brine Treatment

> Widely used for seawater (TDS < 40,000) desalination on large industrial scale

> Inherently limited to low salinity brine
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Initial TDS, mg/L
& Other Industrial technologies: Evaporative crystallization (EC) and

mechanical vapor compression (MVC)
- High Cost, High Parasitic Load, Energy Inefficient

' ) Aines, R.D., et al., Fresh water generation from aquifer-pressured carbon storage: feasibility of treating saline formation waters.
e LOSAIaI'nOS Energy Procedia, 2011;Shaffer, D. L., et al., Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers,
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‘lt 5 Advanced Water Treatment Method

L Membrane distillation/pervaporation is attractive technology
for brine separations.

> Supplement clean water needs for power plants operation

> Improve power generation opportunities/efficiencies (e.g. Brayton cycle)
> Reduce brine disposal costs.
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Disposal/re-Injection High Salnity Brine
RO Reject Straam
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PBl Membrane Module
Hot Sweep Membrane Brine Separations (HGSMBS)

> HGSBSM can be thought of as MD in extreme operating environments
» Los Alamos
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‘f‘?‘ Technology Challenges & Opportunities

& Advances in membrane materials and systems capable of
withstanding thermo-chemically challenging operating conditions
of the HGSMBS process are required.
> High hydrolytic and thermo-oxidative stability (process scheme dependent)
> Stability in high TDS environments
> Fouling resistance
> Resistance to other extracted water components/contaminants
> Appropriate water/water-vapor transport properties

& Current commercial membrane limitations for HGSMBS
> Low thermo-chemical stability especially in presence of steam, superheated
water, and oxidizing environments

o Industry standard membrane materials cellulose acetate, polyamide, polyimide have low
hydrolytic stability

> Fouling and degradation in high salinity feed streams
A
- L?sAlamos
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Thermo-chemically Robust
Membrane Material Development &
Demonstration

at

» Los Alamos
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&% Background: PBI Based Materials/Membranes

> Polybenzimidazole-based materials/membranes exhibit exceptional thermo-
chemical stability
o Tg > 400 °C, presented board temperature operating regime
o Tolerance to “bad actors” such as steam and H,S
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Background: PBI Membrane Deployment

> Next generation thermo-chemically robust high performance PBI hollow fiber
membrane platform developed & demonstrated for gas separation applications
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phase inversion hollow fiber
spinning process

First generation multi-fiber modules
under development

> Rapid translation to high TRL platform enabled by prior work (follow-on effort)

.@ Alamos Patent Application: 20160375410
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& PBI (Hollow fiber membranes) has been explored as a:

Salt Rejection Characterization

> Reverse osmosis membrane for low concentration (£0.5%) brine separation at
temperatures up to 90T

PBI as a “High Temperature” RO Membrane

304 = A 1
> —* PBI > PBI membranes showed significant
v | improvement in water flux
E 20T T compared to that of CA at elevated
X temperatures
“_; 104+ 1 o Saltrejection >295%
§ | o Cellulose acetate completely degraded at

elevated temperatures
0__ £
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- Los Alamos |
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‘f‘a Project Overview

% Objectives

> Realize high performance PBIl-based membranes for high
salinity brine separation

o Optimize materials selection to tailor water vapor transport and
maximize salt rejection at process relevant conditions

o Characterize membrane thermo-chemical stability
characteristics at process relevant conditions with a specific
focus on oxidative stability and stability in high salinity brine
environments

o Characterize membrane flux and salt rejection characteristics at
process relevant conditions

» Los Alamos
NATICKNAL LABORATORY
EST. 1943

VYA Joads)
1A' A4



Thermo-Chemical Stability

Goals

Characterize membrane thermo-chemical stability
characteristics at process relevant conditions

* in oxidative environments and

* in high salinity brine environments

+ Los Alamos
NATIONAL LABORATORY
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& PBI materials have exceptional thermal stability in inert and
oxidizing environments

> Spectroscopic evaluation conducted to understand the thermo-chemical stability of PBI

Thermo-Chemical Stability

o TGA: Exceptional thermal stability up to N
400 °Cin N, & Air 2
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&% Influence of Salt Solution Exposure

& Pure water transport of PBl membranes measured after high
salinity exposure at elevated temperatures

& Performance studies conducted at 120 °C in pervaporation mode

> Membrane samples exposed to high salinity solutions at reflux conditions (90
to 96 °C) for 24 hours followed by pure water flux evaluation

o Decrease in water flux after salt solution exposure (thermal annealing & slow water sorption
saturation not factored in these experiments)

o Water flux levels measured for exposed membranes attractive for industrial applications

Membrane Measured Dense Estimated for Industry
Film Water Flux, | Relevant 200 nm Selective
kg m2 hr! Layer, kg m? hr!
Pristine 0.67 185
Exposed to 100,000 mg/L salt solution 0.48 132
Exposed to 200,000 mg/L salt solution 0.36 99

> Membrane evaluation in higher exposure temperatures & subsequent longer
term stable flux measurement on-going.

- Los Alamos
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Water/Water-Vapor Transport
Characterization

Goals

Optimize materials selection to tailor water vapor transport
and to performance benchmark membrane water flux

s Los Alamos
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\% Transport in Permeate Sweep Mode

& Ideal water vapor transport characteristics of PBI measured using
N, sweep stream

> Custom laboratory set-up using FTIR multi-gas detector for composition analysis
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\t ‘ High Water Permeation Rate

& H-bonding characteristics and presence of N-H group results in high
water vapor transport characteristics

> Exponential increase in water vapor permeation rate at temperatures > 100 °C
i : : :‘5—0 1.0+

o 55 pum film

o Feed pressure = 250 psi

o Consistent flux calculated
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volume decrease rate or
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‘l_t ‘ 6F-PBI Membrane
% Water vapor transport of 6F-PBI similar to m-PBI

> Similar trend in water flux as a function of temperature as observed for m-PBI
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“_t ‘ Influence of Material Chemistry

Y, Two PBIl material chemistries evaluated

> 6F-PBI has approximately one order of magnitude higher H, permeability as compared

to m-PBI
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m-PBI 6F-PBI

6F-PBI is more hydrophobic
than m-PBI

Calculated flux derived assuming an
industrially relevant, 200 nm thick
membrane selective layer

6F- and m-PBls exhibit similar fluxes
at temperatures < 100 °C

6F-PBI has a 30% higher water flux
than m-PBI at 200 °C
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& PBI membrane demonstrated exceptional hydrolytic stability

Exceptional Hydrolytic Stability Demonstrated

> Stable water vapor fraction in permeate stream measured for pure water feed
at 178 °C at 250 psi for 6F-PBI membrane
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Other Potential Applications
Development

Goal

Develop process intensification strategies to deploy PBI
membranes for solving water treatment challenges in
power plants

s Los Alamos
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% Flue Gas Dehydration

% Lost water recovery

> Evaporation from cooling towers and flue gas

Flue Gas (11.9%)

Other Losses (5%)

o Difficult to capture: Low partial/total pressure Wil GGG B 3%)

Heatin (100%)

o 6to 13 % water vapor depending on
the coal feedstock and FGD

o Potential to supply 10 to 33% of boiler

make-up water Electricity

- - " (36.8%)
o Water vapor recovery will improve efficiency

by latent and sensible heat recovery

% No industry standard process to capture water from flue gas

> Condensing heat exchangers, membranes and liquid desiccant based
dehumidification techniques proposed for flue gas dehydration

> Chemically challenging stream due to the presence of SOx & NOXx

o Acid formation during condensation mandates the use of expensive alloys to minimize corrosion

. NAT |ONA$LIAaB°RAT°RY
nNYSE



&

> Sulfonated PEEK (Sijbesma, 2008) evaluated in pervaporation mode

Membrane for Flue Gas Dehydration

o Water quality was not high enough for boiler make-up; significant transport of SO, and NO,

> Inorganic transport membrane condensers (Wang, 2012) enabled 40% water

vapor capture & 5% increase in efficiency.

o Presence of minor amount of sulfate and carbon in permeate water reported.

& PBI membrane potential for flue gas dehydration

o Low N, permeability (0.01 barrer)

o Previously evaluated for steam/
H, feed mixtures at 250 °C
H,O/H, selectivity = 3
H,O/N, (est.) = 300
o Higher selectivity expected at

lower flue gas relevant
temperatures (60 to 180 °C)

o Thermo-chemically robust
to withstand SOx & NOx

o High surface area platform

» Los Alamos
NATICKNAL LABORATORY
EST. 1943
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Leveraging high water vapor perm-selectivity & exceptional
thermo-chemical tolerance of PBI membranes for water
and heat recovery from flue gas?

PBI Membranes for Flue Gas Dehydration

% Heat/water recovery from flue gas

& Additional flue gas cooling to near ambient temperatures may
improve efficiency of carbon capture technology

Hot Boiler Make-up Water Dry Flue Gas

Flue Gas
4 T=55t0 180 °C
Flue Gas

Water Vapor =7 to 17%
T=551t0180°C

4’ Water Vapor =7 to 17%
Cold Water

15to0 28 °C
L Permea te > Vacuum
collector

Dry Flue Gas

Condensing Membrane HX Pervaporation
s Los Alamos
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&% Y.. Conclusions & Future Work

Y Thermo-chemically robust polybenzimidazole-based membranes
having high water/water-vapor transport characteristics are
attractive for brine treatment

& Water transport rate of PBl membrane increase exponential at
elevated temperature exceeding 100 °C provide opportunities for
power plant waste heat utilization

& Demonstrated tolerance of PBI to oxidizing and hydrolytic
conditions at elevated temperatures

& Potential to achieve industrially relevant water flux even after
exposure to high salinity conditions

& Future work: Demonstrate tolerance to high salinity brines and
measure salt rejection characteristics at higher temperatures.

2,

» Los Alamos
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