Model-Based Extracted Water Desalination System for Carbon Sequestration

Rachel Gettings
GE Global Research Center
Membrane & Separations Lab
1 Research Circle, Niskayuna, NY
getting@ge.com

Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number(s) DE-FE0026308."

Imagination at work. Crosscutting Research & Rare Earth Elements Portfolios Review
March 23, 2017
GE Global Research Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Background</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liz Dees</td>
<td>PhD, Chemical Engineering</td>
<td>co-PI, Techno-economic modeling</td>
</tr>
<tr>
<td>Ryan Adams</td>
<td>PhD, Chemical Engineering</td>
<td>Piloting, techno-economic models</td>
</tr>
<tr>
<td>Rachel Gettings</td>
<td>MS, Marine Biology</td>
<td>Piloting, techno-economic models</td>
</tr>
<tr>
<td>Paul Smigelski</td>
<td>MS, Chemistry</td>
<td>Piloting/chemistry/logistics</td>
</tr>
<tr>
<td>Al Stella</td>
<td>PhD, Chemical Engineering</td>
<td>techno-economic models</td>
</tr>
<tr>
<td>Bill Alberts</td>
<td>BS, Process Engineering</td>
<td>Piloting/Testing</td>
</tr>
</tbody>
</table>

The Pennsylvania State University (subcontractor)

<table>
<thead>
<tr>
<th>Name</th>
<th>Background</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li Li</td>
<td>PhD, Environmental Engineering</td>
<td>Task 2: Site identification</td>
</tr>
<tr>
<td>Manish Kumar</td>
<td>PhD, Environmental Engineering</td>
<td>Task 3: High pressure RO</td>
</tr>
</tbody>
</table>
Objective: Defining Water Recovery Process

Formation Water
- TDS (salinity)
- TSS (solids)
- Biological O_2 demand
- Organics
- Hardness

Energy Sources
- Flare gas
- "Waste" heat

Define Water Recovery Process

Concentrate Disposal
- Underground injection control (UIC)
- Well-kill fluid
- Blendstock for hydrofracturing

Solids Disposal
- RCRA-D
- NORM, industrial
- Incineration

Treatment Chemicals
- Local availability
- Cost

Product Off-takes
- Recovered water
- Salt
- Value-added minerals
Strategy for Defining Water Recovery Process

1. Define Base Case
 - Conventional desalination technology
 - Assess required pretreatment needs
 - Key question: generate a solid NaCl product?

2. Compare Base Case & Alternative Desalination Technologies
 - Softening required?
 - Aspen Plus and Excel models
 - Cost of softening chemicals
 - Techno-economic modeling of desalination processes
 - Aspen Plus and Excel models
 - Cost results (normalized by base case cost)

3. Validation of Pilot Readiness
 - Bench & pre-pilot scale experiments
 - Model refinement
1. Define Base Case

Pretreatment

Extracted Water Feed: 500 gpm (113.5 m³/hr)
- 180 g/L TDS
- 500 mg/L TSS

Pretreatment:
- Deoiling
- Filtration
- Softening (optional)
- Dissolved organics removal

TSS Filtration
- Sludge to RCRA-D disposal
 (5.5 tonne/day 25 wt% solids)

Option 1
- Brine Concentrator
 - Concentrate to reinjection:
 - 295 g/L TDS
 - 69.3 m³/hr

Option 2A
- NaCl Crystallizer
 - NaCl[^s]: 460 tonne/day
 - Purge: 3.9 m³/hr

Option 2B
- Brine Concentrator
 - NaCl Crystallizer
 - 95.8 m³/hr distillate
1. Define Base Case
Conventional Desalination

Extracted Water Feed: 500 gpm (113.5 m³/hr)
180 g/L TDS
500 mg/L TSS

Pretreatment:
Deoiling
Filtration
Softening (optional)
Dissolved organics removal

TSS Filtration
Sludge to RCRA-D disposal (5.5 tonne/day 25 wt% solids)

Option 1
Brine Concentrator
Concentrate to reinjection:
295 g/L TDS
69.3 m³/hr

Option 2A
NaCl Crystallizer
Distillate: 44.6 m³/hr
NaCl(s): 460 tonne/day
Purge: 3.9 m³/hr

Option 2B
Brine Concentrator
NaCl Crystallizer
Distillate: 95.8 m³/hr

44.6 m³/hr distillate
95.8 m³/hr distillate
95.8 m³/hr distillate
1. Define Base Case
 Desalination Options

Base Case Desalination Options Comparison

Cost model details
- Feed: 113.5 m³/hr, 180 gm/L TDS, $0.40/bbl reinjection cost
- Installed CAPEX
- Electricity for compressor
- Concentrate or purge disposal
- Pretreatment ($0.25/bbl), no softening
- No credit for distilled water, salt
- Out-of-scope: effect of parasitic load on process economics

Option 1 lowest cost for UIC < $0.40/bbl...selected for base case
1. Define Base Case

FF-MVR

Base Brine Concentrator: Falling Film Mechanical Vapor Recompression (FF-MVR)

- **Feed Brine**
 - 500 gpm
 - 180 g/L TDS
 - 937 g/L H₂O
 - 84 wt% H₂O

- **Pretreat**

- **Distillate**
 - 206 gpm

- **Concentrated Brine**
 - 294 gpm
 - 304 g/L TDS
 - 890 gm/L H₂O
 - 75 wt% H₂O

- **Re-injection to deep saline formation**

- **Electricity**
Alternate Brine Concentration Technologies

Suitable for high TDS (180 g/L) extracted water:

1. Forward Osmosis (FO)
2. Membrane Distillation (MD)
3. Humidification-Dehumidification (HDH)
4. Clathrate Chemical Complexation
5. Turbo-Expander-based Freezing
6. High Pressure Reverse Osmosis

High cost of softening hard waters limits alternate desalination options.
RO Preconcentration for Brine Concentrator Size & Energy Reduction

Technical risks of RO at high TDS:

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling</td>
<td>Fouling-resistant membrane & module; adequate pretreatment</td>
</tr>
<tr>
<td>Compaction</td>
<td>Membrane & module performance stable at high feed pressure</td>
</tr>
</tbody>
</table>
3. Pilot Readiness
Model refinement

Technoeconomics: Hybrid HPRO + FF-MVR vs. FF-MVR

<table>
<thead>
<tr>
<th>HPRO concentrate TDS (mg/L)</th>
<th>Normalized cost (HPRO+FF-MVR/FF-MVR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>130,000</td>
<td>0.53</td>
</tr>
<tr>
<td>175,000</td>
<td>0.47</td>
</tr>
<tr>
<td>245,000</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Hybrid HPRO + FF-MVR system estimated to be ~1/2 the cost of FF-MVR

Technical risks: membrane & element performance, compaction, water chemistry (scaling)
SWRO + HPRO Hybrid Technoeconomics Summary

SWRO + HPRO hybrid reduces system cost in many cases (dependent on HPRO material, pretreatment & concentrate disposal costs)
3. Pilot Readiness Model refinement

Current vs. Ideal HPRO techno-economics

Current: based on real system specs from RCC

Hybrid: estimates based on upscaling SeaPRO-84 for high pressure/TDS and current GRC performance @ 2000 psi (aspirational performance @ 3000 psi)

Ideal: estimate based on upscaling SeaPRO-84 for high pressure/TDS and aspirational membrane performance

- **Base case FF-MVR**
 - Current: FF-MVR
 - 2000 psi (130k TDS) HPRO
 - 3000 psi (175k) HPRO
 - Ideal: 6800 psi (295k) HPRO

- **Current:**
 - Savings: 47%, 53%, 61%

- **Ideal:**
 - Savings: 53%, 61%

Feed (SWRO concentrate):
- 500 gpm
- 70,000 mg/L TDS

Concentrate:
- 295,000 mg/L TDS

Permeate:
- 395 gpm
Produced Water Treatment Facility
On-site pilot-scale proving grounds for separation materials & unit operations R&D

Microfiltration Unit: 2 GPM permeate with < 10 NTU, auto-backwash

Ultrafiltration Unit: ≤ 5 GPM permeate for removing fines, oily colloids

Steam Regenerable Sorbent (SRS) Unit: ≤ 2 kg resin, ≥ 0.5 LPM, “field” flow profile, ≤ 235 psig steam (≤ 200 °C)

- Feed: Tank + Controls
- Resin Column
- Backwash/Steam Controls
- Steam Generator

Comprehensive analytics on-site & off-site: LC-OCND, TDS, TSS, TOC, cond., BTEX/GRO/DRO
GRC High Pressure Test Bench

High pressure bench can test an 1812 module or flat sheet membrane at pressures up to 4000-5000 psig
Components Critical for High Pressure RO

1. Identify components responsible for performance loss at high TDS/pressure
2. Replace components with suitable alternatives to maximize TDS/pressure operation range of spiral-wound RO module

https://www.freshwatersystems.com/c-238-ro-membranes.aspx
3. Pilot Readiness
Bench and Pre-Pilot Scale Testing

GRC Results

Existing

Permeate tube crushed at 2900 psi

Cracks in membrane and permeate tube

Eliminate Gross Failure

Re-enforced core tube: intact to 4800 psi (did not fail)

Minimize Compaction

Compaction onset (NDP):
PC1: 1000 psi
PC2: 1500 psi

Maximum pressure achieved: 4800 psi (no failure)
Compaction onset NDP increased from 1000 to 1500 psi
Module Improvements

- **Existing**
- **Eliminate Gross Failure**
- **Minimize Compaction**

<table>
<thead>
<tr>
<th>Component</th>
<th>Standard 1812</th>
<th>1(^{st}) HPRO elements</th>
<th>2(^{nd}) HPRO elements</th>
<th>Next steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>AG</td>
<td>AG</td>
<td>AG</td>
<td>AD</td>
</tr>
<tr>
<td>Feed spacer</td>
<td>34 mil</td>
<td>30 mil</td>
<td>30 mil</td>
<td>30, 45 or 65 mil</td>
</tr>
<tr>
<td>Permeate carrier</td>
<td>Standard</td>
<td>PC1(a)</td>
<td>PC1(b)</td>
<td>Alternate materials</td>
</tr>
<tr>
<td>Core tube</td>
<td>Standard</td>
<td>Reinforced</td>
<td>Reinforced</td>
<td>-</td>
</tr>
<tr>
<td>Failure pressure</td>
<td>2900 psi – crushed core tube</td>
<td>n/a (up to 3200 psi)</td>
<td>n/a (up to 4800 psi)</td>
<td>-</td>
</tr>
<tr>
<td>Compaction NDP</td>
<td>800</td>
<td>1000</td>
<td>1500</td>
<td>Membrane Development</td>
</tr>
</tbody>
</table>

Reinforced core tube prevents gross failure
Next steps: identify/develop materials to minimize membrane compaction
Acknowledgments
Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number(s) DE-FE0026308."

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."
SWRO + HPRO Hybrid Technoeconomics Summary

Base Case 2x SWRO System for Comparison to Hybrid SWRO + HPRO System

- **200 GPM**
- **445 GPM/35k TDS**
- **35k TDS Feed 890 GPM**
- **445 GPM/35k TDS**

Total Permeate 400 GPM

Concentrate to Disposal:
- **245 GPM/63k TDS**

HPRO Feed Pressure and Concentrate Concentration

- **SWRO Permeate:**
 - a) 200 GPM
 - b) 219 GPM
 - c) 250 GPM
 - d) 281 GPM

- **HPRO Permeate:**
 - a) 199 GPM
 - b) 181 GPM
 - c) 150 GPM
 - d) 119 GPM

Total Permeate 400 GPM

- **35k TDS SWRO Feed:**
 - a) 445 GPM
 - b) 486 GPM
 - c) 556 GPM
 - d) 625 GPM

- **63k TDS HPRO Feed:**
 - a) 245 GPM
 - b) 267 GPM
 - c) 306 GPM
 - d) 344 GPM

Concentrate to Disposal:
- **46 GPM/295k TDS**
- **86 GPM/181k TDS**
- **156 GPM/119k TDS**
- **225 GPM/94k TDS**

Normalized Cost of Hybrid SWRO + HPRO System Cases Studied

<table>
<thead>
<tr>
<th>Case</th>
<th>System Feed Flowrate (GPM)</th>
<th>System Concentrate Flowrate (GPM)</th>
<th>System Concentrate TDS (mg/L)</th>
<th>Normalized Cost*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>445</td>
<td>46</td>
<td>295,000</td>
<td>0.90</td>
</tr>
<tr>
<td>(b)</td>
<td>486</td>
<td>86</td>
<td>181,000</td>
<td>0.76</td>
</tr>
<tr>
<td>(c)</td>
<td>556</td>
<td>156</td>
<td>119,000</td>
<td>0.82</td>
</tr>
<tr>
<td>(d)</td>
<td>625</td>
<td>225</td>
<td>94,000</td>
<td>0.91</td>
</tr>
</tbody>
</table>

*Normalized cost = (hybrid SWRO + HPRO system cost)/(2x SWRO system cost); cost per m3 product water

HPRO Feed Pressure and Concentrate Concentration

<table>
<thead>
<tr>
<th>Case</th>
<th>HPRO Concentrate TDS (mg/L)</th>
<th>HPRO Operating Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>295,000</td>
<td>6800</td>
</tr>
<tr>
<td>(b)</td>
<td>181,000</td>
<td>3200</td>
</tr>
<tr>
<td>(c)</td>
<td>119,000</td>
<td>1900</td>
</tr>
<tr>
<td>(d)</td>
<td>94,000</td>
<td>1500</td>
</tr>
</tbody>
</table>

Costs included: SWRO/HPRO (Capex, Energy, Membrane Replacement), Pretreatment and Disposal
Increasing SWRO + HPRO system size:
- More permeate production from SWRO
- Lower recovery required of HPRO
- More concentrate remaining for disposal
TEM details

Opex
- Key Assumption:
 - Flux linear with pressure

Capex
- High pressure system estimate:
 \[C_V = C_B F_t (B_1 + B_2 F_M F_P) F_C \]
- Base cost: SeaPRO-84 cost
- Key assumption:
 - HPRO system has same flowrates, number of elements & housings as SeaPRO system
- Ongoing improvements:
 - Quotes for high cost components (pumps, ERDs, pressure gauges, controls (VFD)) to validate factored estimate approach
 - Element cost estimate from components
 - Account for corrosion (\(F_C \))
 - Use real (not ideal) membrane performance (i.e., with compaction)

<table>
<thead>
<tr>
<th>ID</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_V)</td>
<td>High pressure component cost</td>
</tr>
<tr>
<td>(C_B)</td>
<td>Base component cost</td>
</tr>
<tr>
<td>(F_t)</td>
<td>Time factor (assumed = 1 b/c base cost quoted 7/2016)</td>
</tr>
<tr>
<td>(F_M)</td>
<td>Material factor (for corrosion resistance)</td>
</tr>
<tr>
<td>(F_P)</td>
<td>Pressure factor (material thickness for high pressure)</td>
</tr>
<tr>
<td>(F_C)</td>
<td>Corrosion factor (additional thickness to allow for corrosion rate over system lifetime; assumed = 1 but needs to be included)</td>
</tr>
</tbody>
</table>