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U.S. EPA

~45% for beneficial use
fly ash - concrete
gypsum - drywall

~55% must be 
disposed as solid 

waste

(American Coal Ash Association)

Production rate: 
Over 100 million metric 
tons per year in U.S.

Coal Combustion Residues



Technological Approach
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Feedstock Coal Ash

Coal Basin

Illinois Basin (13%)

Appalachian 
Basin (27%)

Powder River 
Basin (41%)

Coal Production in the U.S.

Taggart et al., Env. Sci. & Technol., 2016
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REEs: Modes of Occurrence in Fly Ash

1 μm

aluminum-oxide particle 
with Ce, La, Ca, Nd, Ba

discrete 
monazite 
particle

Nanoscale 
inclusions in 
amorphous 
carbon5



Sc,  
$2,886 

La,  $135 

Ce,  
$279 

Pr,  $71 

Nd,  $324 

Sm,  
$29 

Eu,  $214 

Gd,  $61 
Tb,  $102 Dy,  $339 

Y,  
$223 

Er,  $31 
Yb,  $48 Lu,  $65 

Total Annual Value in Unused Fly Ash

Taggart et al., ES&T, 2016

Total: 
$4 billion per year

Millions USD

(Basis: 2011 prices for high 
purity rare earth oxides)

Feedstock Coal Ash
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• Much higher calcium content of PRB ashes 
may account for higher extractability

• Greater susceptibility to leaching

Extraction of REEs from Feedstock Coal Ash
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Extraction method

Fly Ash (NIST std reference material)

Acid leaching
Heated 

HF/HNO3, >4 h

Sinter
Heated alkaline agent, 

30 min

Acid leaching
3 M HNO3 at 
room temp.

Extraction of REEs from Feedstock Coal Ash
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Membrane Separations
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Synthetic Leachate

Element Concentration 
(mg L-1)

Na+ 6270 
Mg2+ 10 
Ca2+ 33
Al3+ 271 
Fe3+ 90
Si4+ 590 
Y3+ 0.15 
Tb3+ 0.15 
Er3+ 0.15 
Dy3+ 0.15 
Nd3+ 0.15 
Eu3+ 0.15 

1% v/v HNO3 Initial pH= 0.95

Separations:
• Chemical Precipitation & 

Nanofiltration
• Micelle-enhanced ultrafiltration
• Liquid film emulsion membranes
• Electrochemical deposition
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pH-adjusted chemical precipitation
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• pH adjustment with NaOH
• Precipitation time (20-90 min)
• Filter particles (0.45 m pore size)

At pH 4.5:
• Substantial removal of Fe, Al and Si
• ~12% loss of REEs
• No removal of Na, Ca, and Mg



Nanofiltration after chemical precipitation
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Separation of monovalent ions (Na+, K+) from others



Liquid Film Emulsions

HCl or HNO3
(Stripping phase)

Span 80
(Surfactant)

DEHPA
(Chelating agent)

REE partitions 
from leachate 
into emulsion
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>90% reduction in Silica

Kerosene
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pH 2.5 - Kerosene pH 1 - Mineral Oil
pH 2.5 

Kerosene
pH 1 

Mineral Oil
Na (ppm) 564.1 564.4
Mg (ppm) 0.9 1.1
Al (ppm) 22.2 20.6
Ca (ppm) 9.9 5.0
Fe (ppm) 6.3 3.4
Sc (ppb) 0.0 0.0
Y (ppb) 786.9 786.3

Nd (ppb) 843.7 879.5
Eu (ppb) 965.8 1143.9
Tb (ppb) 1007.1 1135.7
Dy (ppb) 974.6 2269.3*
Er (ppb) 711.6 810.4

*Accidentally added double Dy in feedwater
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Coal Ash Leachate
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Leachate pH 1.1 with Kerosene

Supported Liquid Membranes



Electrochemical Deposition

Flux

Alkaline 
Roasting

Acid 
leaching

Membrane 
System

Electrochemical 
Deposition

Mechanical 
Separation

Mixed REE 
concentrate 

(>2%)

Feedstock
Coal Ash

Residue Residue Residue

Acid

18



Filter housing

Peristaltic pump DC power supply

Electrochemical Deposition
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SEM image of 
carbon nanotube filter

Influent Metal 
Solution 

Effluent Metal 
Solution 

 
PTFE (x4) 

Casing 
Ti shim (-) 
CNT (-) 

 
CNT (+) 
Ti shim (+) 
Casing  



Electrochemical Deposition
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A. B. C. 

• Voltage-mediated recovery confirmed, but 
not at theoretical reduction potentials

• Significant pH sensitivity
• Minor influence of flow rate



Electrochemical Deposition
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O2 Back  
Diffusion 

O2 + 2H2O  

+4e-  

 2H2O 
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+2e-  

CATHODE 

ANODE 

4OH-
  

A. Oxygen Reduction 

M2O3(s)  
 

B. Water Splitting 

2 M(OH)3 M2O3 + 3 H2O  
 

 2H2O 

-4e-  

1.5 V 

50m 

A. Cu  

50m 

3.0 V D. Nd  3.0 V 

50m 

B. Sc 3.0 V 

50m 

C. Eu 

30m 

3.0 V E. Ga  

 A. Normal Leads 

B. Reverse Leads 

Cathode 

   Anode 

   Anode 

Cathode 

34 ± 15% 
Recovery 

Eu2O3 

56 ± 15% 
Recovery 

Eu2O3 

• Reduced metal 
crystals for easy-
to-reduce metals

• Oxide recovery of 
REE

• Oxygen sources: 
both dissolved 
and 
electrochemical



Electrochemical Deposition
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Filter 1:  
1.5V, 96 ± 2% recovery Cu 

50m 

Filter 2:  
3.0V, 65 ± 12% recovery Eu 

50m 

A. 

2m 

2m Eu Cu 

Eu Cu 

B. 
Recall LFE enrichment step:

Relatively pure samples: 
great separation

Currently: testing 
combination of LFE 
pretreatment for mixed 
REO capture

Real leachate: Si, Fe, Al breakthrough

Cu Eu

Pre-treatment required! 

Stacked filters



Techno-Economic Model Overview

• Inputs:  
• type of CCR: based on geographical regions.
• Select alkaline roasting conditions (if any).
• Select membrane system concentration approach: nanofiltration (NF), 

micelle enhanced ultrafiltration (UFM), or liquid emulsion membrane 
recovery (LEM).

• Model output: CAPEX and OPEX costs as well as final 
REE mass and concentration.

Key Assumptions

(optional)

1000 kg/hr
flux = 20LMH flux = 12 LMH

100% 95% 95% 95%

100%



TE Analysis Results
Scenario 1: NF as REE concentration step. (NF@ 80% water recovery; 90% 
rejection of multi-valent ions; 25% rejection of monovalent ions)

 Costs are driven by OPEX over CAPEX – required chemicals consumed and disposal 
costs are the dominant factors. These have high uncertainty at this stage of project.

 Potential value – is determined from individual REE recovered value. 
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Impact of Process Selection – Concentration Step

 Highest to lowest costs: LEM > UFM > NF > No concentration step.
 Consumption of chemical inputs drive the operation cost for each concentration 

option.
 The “none” option may not be a true option if a minimum REE concentration is 

required for recovery in the final step. 
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Summary
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Extraction from coal ash:
Acid leaching or alkaline roasting (depends on coal ash type)

Leachate separations:
Requires selectivity of desired metals from majors (Fe, Al, Si, Ca)

Techno-economic feasibility:
Focus research on reducing chemical consumption, disposal
Added value: Aluminum, Scandium

Chemical precipitation
Nanofiltration
Liquid film emulsions



Thanks!
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