Novel Membrane and Electrodeposition-Based Separation and Recovery of Rare Earth Elements from Coal Combustion Residues

Award #DE-EE0026952

Helen Hsu-Kim, DUKE UNIVERSITY

Zachary Hendren, Research Triangle Institute James Hower, UNIVERSITY OF KENTUCKY **Desirée Plata**, Yale University Mark Wiesner, Duke University

Coal Combustion Residues

(American Coal Ash Association)

Technological Approach

Feedstock Coal Ash

Taggart et al., Env. Sci. & Technol., 2016

REEs: Modes of Occurrence in Fly Ash

Feedstock Coal Ash

Total Annual Value in Unused Fly Ash

Extraction of REEs from Feedstock Coal Ash

Extraction of REEs from Feedstock Coal Ash

Membrane Separations

Synthetic Leachate

Element	Concentration (mg L ⁻¹)
Na⁺	6270
Mg ²⁺	10
Ca ²⁺	33
Al ³⁺	271
Fe ³⁺	90
Si ⁴⁺	590
Y ³⁺	0.15
Tb ³⁺	0.15
Er ³⁺	0.15
Dy ³⁺	0.15
Nd ³⁺	0.15
Eu ³⁺	0.15

1% v/v HNO₃ → Initial pH= 0.95

Separations:

- Chemical Precipitation & Nanofiltration
- Micelle-enhanced ultrafiltration
- Liquid film emulsion membranes
- Electrochemical deposition

pH-adjusted chemical precipitation

- pH adjustment with NaOH
- Precipitation time (20-90 min)
- Filter particles (0.45 μm pore size)

At pH 4.5:

- Substantial removal of Fe, Al and Si
- ~12% loss of REEs
- No removal of Na, Ca, and Mg

Nanofiltration after chemical precipitation

Rejection (%)

Liquid Film Emulsions

Supported Liquid Membranes

Supported Liquid Membranes

17

19

-1.95

- Voltage-mediated recovery confirmed, but not at theoretical reduction potentials
- Significant pH sensitivity
- Minor influence of flow rate

- Reduced metal crystals for easyto-reduce metals
- Oxide recovery of REE
- Oxygen sources: both dissolved and electrochemical

Relatively pure samples: great separation

Pre-treatment required!

Recall LFE enrichment step: 100% pH 2.5 - Kerosene pH 1 - Mineral Oil 90% 80% ma 70% /Feed 60% 50% 40% ž 30% Wass 20% 10% 0% Nd Eu ть Fe Sc v

> Currently: testing combination of LFE pretreatment for mixed REO capture

Techno-Economic Model Overview

concentrate

(>2%)

- Select alkaline roasting conditions (if any).
- Select membrane system concentration approach: nanofiltration (NF), micelle enhanced ultrafiltration (UFM), or liquid emulsion membrane recovery (LEM).
- Model output: CAPEX and OPEX costs as well as final REE mass and concentration.

TE Analysis Results

Scenario 1: NF as REE concentration step. (NF@ 80% water recovery; 90% rejection of multi-valent ions; 25% rejection of monovalent ions)

- Costs are driven by OPEX over CAPEX required chemicals consumed and disposal costs are the dominant factors. These have high uncertainty at this stage of project.
- Potential value is determined from individual REE recovered value.

Impact of Process Selection – Concentration Step

- Highest to lowest costs: LEM > UFM > NF > No concentration step.
- Consumption of chemical inputs drive the operation cost for each concentration option.
- The "none" option may not be a true option if a minimum REE concentration is required for recovery in the final step.

Summary

Leachate separations:

Requires selectivity of desired metals from majors (Fe, AI, Si, Ca)

Techno-economic feasibility:

Focus research on reducing chemical consumption, disposal Added value: Aluminum, Scandium

Thanks!

Research Team:

Duke University: Ross Taggart, Ryan Smith, Borte Mutlu, Beatrice Cannoli Yale University: Riley Coulthard, Megan O'Connor University of Kentucky: Kevin Henke, Uschi Graham, Madison Hood RTI International: Nandita Akunuri

