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* Accelerating commercialization of supercritical carbon dioxide power cycle technology by
addressing materials and manufacturing challenges for components of sCO, power systems.
* Joining of similar and dissimilar power plant alloys
* Performance of joints in sCO, power cycle environments

* Milestones
» Demonstrate mechanical and environmental performance of joints in supercritical CO, - 09/30/2017

* Deliverables

* Technical report (either presentation or publication) on the high temperature corrosion of the joined
power plant materials. - 09/30/2017

* Technical report (either presentation or publication) on the cross-joint strength of typical power plant
materials. - 09/30/2017
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* Supercritical CO, power cycles and compact heat exchangers

* Materials issues in manufacturing compact heat exchangers
e Diffusion bonding (DB)
* Transient liquid phase bonding (TLPB)

* Mechanical strength of bonded structures
* High-temperature corrosion of bonds in sCO,
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Supercritical CO, Power Cycles N |NATIONAL
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Compact Heat Exchangers N=[NATOoNAL
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* Higher effictency

* Due to much shorter

‘ - heat diffusion lengths
o — in fluid

* Use of less matertals
(expensive
superalloys)

* Takes less space

* Modular design

* Expandable to large
power plants
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‘Heat Exchangers N=

Micro channel heat exchangers TL

* Higher heat transfer efficiency due to shorter heat diffusion lengths
* Smaller size
* Modular Design

* Dimensional Tolerances

* Uniform microstructure

* Pattern microscale flow paths
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- Pressure & Temperature Drop

- Environmental Resistance

Diffusion bonding, brazing, and
transient-liquid-phase (TLP)
bonding are the most robust

« Join these using laser welding, approaches for sCO, cycles

diffusion bonding or brazing
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Schematic of diffusion bonding process

7 T ///i// H230 @ 1150°C
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Ni-P plating acts e
as a low-melting b * Both solid state and
interlayer L _ | liquid state reactions
& 1200 Bonding T t = 1170 o'; -
% 4anding Temperatu A o m e z.~ ° Less pressure than
- diffusion bonding
g— 1000
LI * Lower melting point
" interlayer
| |E
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* Downselect between H230 &

L5808

H282
e H230 — NiCrW solid solution
strengthend alloy Cold rolled and 1232 °C solution
annealed - 550 um H230 shims Stacked onto a fixture Pressed at 1150°C, 12.7MPa in vaq

* H282 — Gamma prime
strengthened alloy

* H230 was selected and
challenges with H282 will be | |

discussed later J

Tensile Samples
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Microstructure Mechanical Behavior
I . 0 RT W Diffusion ot ‘;l'_ ;
Bonded ‘
0.4 H Base Alloy

230
0.3

0.2

0.1

Ductile fracture along the

o0 T s
Yield Strength (GPa) Elongation precipitate bands.

Grain growth

Etched microstructure to observe grain growth through the bond line
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Tensile Testing
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Yield strength of TLP stacks is ~86% of bulk H230

400 -
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Yield Strength (MPa)
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750°C

TLP Sheet

| —

Tensile samples from H230 stacks
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Low cycle fatigue properties @ 760°C

Creep properties w0l Bulk H230 550°c
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Challenges in bonding of H282 ¥E?ﬁ:ﬁ°ﬁ'ﬁf§m

Ni-12P coating on the Bondline after TLP bonding Fracture Surface
metal for TLP bonding .

Coating does not adhere to the metal

o)
20 um

Al, O, particles (dark) along the bondline AlLO; particles (dark) on the fracture
surface

EDS maps in the vicinity of the bondllne

Intermetallic
formation :

50 um Slectron Image 1

Mo

Challenges with TLP bonding of H282 — Surface oxides & Intermetallic Formation
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High-Temperature Oxidation of Bonded N = |NATIONAL
Regions in CO, T L [[ESHNoLoGY

10 mm (0.394 in)

15 mm (0,590 in)

1 bar CO, Exposures

250 bar CO, Exposure
* Gas: CO2 (99.999% purity)
* Flow rate: 2 ml/min

* Gas: 1bar CO, (99.999% purity)
* 0,levelin furnace tube: <12 ppm
e Gas flow rate: 0.032 kg/h

«  Temperature: 700°C Characterization « Temperature: 720°C
+  Duration: 4000 h in 500 h increments Mass Change * Duration: 1500 h in 500 h incr.
* 24 h purging with CO, before heating ;(;3 * Argon purging before heating

@ ERERGY .



Oxidation in sCO, (720°C - 250 bar)
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H282
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AR 282 TLP

HT 282 TLP
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H282 continues to have mass gain up to 1500 hrs BUT H230 mass gain tapers off after 500 hrs
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Atmospheric CO, Exposure
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Fastest oxidation rate within first 500 hrs, then
slower, but steady continued oxidation

0.8 H282
& 05
5
W 04
E
)
% 03
7]
G
p 02
g —e—H2682 TLP
0.1
=0=H282 Base
0.0
0 1000 2000 3000 4000
Exposure Hours
Glancing

angle » Surface is predominantly Cr,0,, with some M;0,
XRD phase appearing at longer exposure times
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Bonded alloys exposed to 700 °C aCO,
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500 h exposure time 1500 h exposure time

H230 TLP H230 DB H282 TLP H230 TLP H230 DB
, p—

Cr-oxide scale Cr-oxide scale

Near bond line
Near bond line

H282 TLP

lT
\ P4 ]" -

. / :
~—|nternal Al-
and Si-oxides

Mn-rich Cr-oxide scale 0

5 pm

Internal
Al-oxides

/r
- e —
5 um

y'-free zone

Internal Al-oxides 4/ zone

Far from bond line
Far from bond line

——
&pum

—
5 um Y zone  5um

« Thin, protective Cr-rich oxide layers are formed for H230 and H282 during exposure to 700 °C aCO.,.

» Internal oxidation of Al leads to a sub-surface layer depleted of y’ phase in H282.

* No difference in oxidation resistance is observed near/far from the bond layer for either alloy.

ENERGY




Bonded alloys exposed to 720 °C sCO, N=[Nrona
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Similar results as H230 and H282 bonded
H230 TLP H282 TLP samples exposed to 700 °C aCO,:

500 h exposure time

« Thin Cr-rich oxide layers.

 Internal oxidation of Al leads to a sub-
surface layer depleted of y’ phase in
H282.

Near bond line

» No difference in oxidation resistance
observed near/far from the bond layer.

One difference is that sCO, exposures show a
2-layer oxide structure containing some Mn
(H230) or Ti (H282) in addition to Cr. This is the
subject of ongoing investigation.

Far from bond line
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Performance of welded alloys

in sCO,

* Similar and dissimilar metal welds (1 inch
thick plates) were done with gas tungsten
arc welding (GTAW) and post weld heat
treated at Edison Welding Institute.

« P22-P22,

* P91-P91,

* 347H-347H,

* Alloy 625 — Alloy 625,
« Alloy 263 — Alloy 263,
* P22-P91,

* P91 -347H,

* P22 - Alloy 263,

* Alloy 625 — Alloy 263,
* 347H - Alloy 263

* Changes in microstructure (Heat affected
zone — HAZ) due to welding were
characterized using optical microscopy and
hardness testing

* sCO2 exposures of weld samples will be
performed

* Corrosion performance
* Mechanical performance

Base tI P2

400
350
S 300
250
200

150

weld metal

L

-15

-10

-3 0

5

distance from center line (mm)
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Summary

] Oxidation in supercritical CO, at
| 720°C and 250 bar

Composition (WR. %)
E E B 1 H NN

]

AR230TLP |
| Sheet 230

bl
e
w

2) Ni increase, Cr dip through
1) Uniform bond with grain the bond

growth across the bondline

HT 230 TLP

LA
[
[

Specific Mass Gain (mg/fem?)
=] =
8 S

H230TLP

8

Time (hrs) _?_:" [=—
E 300 - ]
2 +  Thin Cr-rich oxide 3
Em layers. 28
= « Nodifference in
= oxidation resistance
> observed near/far from &
o the bond layer. )
TP Sheet .g
§
3) TLP-bonded H230 with ~ 86% 4) Ductile fracture through the bond, plastic =
strength of bulk @ 760° strain constrained in the bond region

5) Similar oxidation behavior between the
bond region and base metal
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