2017 CROSSCUTTING Research Project Review

Omni William Penn Hotel Pittsburgh, PA March 22, 2017

1

REDUCED MODE SAPPHIRE FIBER AND DISTRIBUTED SENSING SYSTEM

DE-FE0012274

Gary Pickrell, Anbo Wang, Daniel Homa Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 pickrell@vt.edu, awang@vt.edu, dan24@vt.edu http://photonics.ece.vt.edu/

Overview

- Motivation, Objectives, and Technical Challenges
- Research Approach and Technology
 - LMV Sapphire Fiber Design and Fabrication
 - Distributed Temperature Sensing System
- Milestones and Schedule
- Impact and Achievements
- Next Steps

Motivation

- Eliminate barriers to the seamless integration of fiber optic sensing technologies in power plants
- Improve the operating efficiencies and safety of power plants via the real time and distributed sensing of temperature

Project Objectives

- Goal: Develop a Raman scattering distributed temperature sensing system based on a low modal volume (LMV) sapphire fiber sensor.
- **Objective:** Design, fabricate and characterize a sapphire fiber that limits the number of guided modes.
- **Objective**: Develop a prototype, fully-distributed sensing system and evaluate its performance in a laboratory test environment for operation at temperatures over 1000°C.
- **Benefit**: The proposed sapphire fibers and sensors will allow for the seamless integration of mature fiber optic sensing technologies in new power plant control systems.

Technical Challenges

- Performance of single crystal sapphire fibers
 - Large "core" diameters
 - High numerical aperture (NA)
 - High loss
 - Weak Raman signal in sapphire fiber
- High operating temperatures
 - Thermal radiation generated by the sapphire fiber
 - Thermal radiation coupled into the fiber end
- Achievable spatial resolution
 - Pulse width
 - Modal dispersion

TECHNOLOGY & APPROACH

Research Approach

- Design and fabricate a single crystal sapphire fiber with a modal volume optimized for sensor applications
 - Wet acid etching at elevated temperatures
 - "Bundled" photonic crystal sapphire fiber design
 - Sapphire fiber growth via LHPG
- Design and construct a Raman scattering distributed temperature sensing system
 - Interrogation at 532 nm
 - Design and component optimization
 - Performance testing

RESEARCH PROGRESS: LMV SAPPHIRE FIBER DESIGN AND FABRICATION

Fabrication via Wet Acid Etching

- Sulfuric/phosphoric acid solutions
 - Studied and optimized concentrations
- Elevated temperatures (>200°C)
 - Determined etch rates
 - Determined activation energies
 - Studied a-plane vs. c-plane
- Extended lengths (~ 1m)
- Improved surface quality
 - Eliminated surface deposits
- Simple, cost effective, scalable
- Potential new applications
 - Gas sensing, inclined tip sensing

Equipment and Techniques

Custom Etching System

Excellent Temperature Control

Temperature and Etching Uniformity

Sample	Top Diameter (μm)	Bottom Diameter (µm)				
A	82.0	73.1				
В	80.9	73.4				
С	79.6	74.4				
Average	80.8	73.6				
Standard Deviation	1.2	0.7				

Understanding and Control

Characterization of Surface Quality

Optical Microscopy

(fiber diameter, contamination, polarization states, non-uniformities)

Scanning Electron Microscopy (SEM)

Energy-dispersive X-ray spectroscopy (EDAX)

(fiber diameter, contamination, composition/elemental analysis, defects, nonuniformities)

Modal Volume Measurement

- Three different wavelengths (532nm, 782.9nm, 982.9nm)
- Focused into connector using direct free-space coupling
 - Overfilled using objective lens with NA=0.66
- Sample mounted on 3-axis stage
- CCD camera beam profiler mounted on 3-axis stage
- Polished fiber tip (100 nm lapping film)

Far Field Analysis Method

- Far-field intensity patterns capture
 - Prior to etching
 - Post etching and polishing
- Modal interference and superposition yields a "speckled" appearance
- Reduction in diameter and modal volume
 - Number of power peaks (speckles) decreases
 - Relative diameter of individual speckles increases
 - Modal interference and superposition due a decrease in the number of supported modes
- Qualitative analysis of modal volume
- Low order mode profiles are visible

Single mode sapphire fiber

Far Field Analysis of RDSF

The trend in modal volume reduction with a reduction in fiber diameter and increase wavelength agrees with theoretical predictions

NA Characterization Techniques

- Vary angle of waveguide tip with stationary photodetector (TIA standard)
 - Requires both ends of fiber to be connected
 - Requires decent fiber length (>1/3m)
- Vary input NA and measure output power
 - Assumes all intensity effects are NAdependent
- Beam diameter differential
 - Overfill fiber (all modes are excited)
 - Measure beam width twice with known distance between
 - Vergence angle calculated from beam width differential
 - Requires consistent beam projection to be accurate (single mode)

Theoretical vs. Effective NA

- The measured ("effective") NA can deviate significantly from the theoretically calculated value
 - Non-ideal geometry (i.e. noncircular cross section)
 - Small core diameter
 - Inefficient coupling, surface scattering, angled end faces
- Beam width differential method
 - CCD camera beam profiler (Thorlabs BC106-VIS)

	Calcul	ated Modal V	/olume
Wavelength	NA _{Theor.} =~1.4	NA _{eff} =0.09	6.5µm
532nm	1614	2	0
783nm	736	1	
983nm	461	1	

Laser Heated Pedestal Growth

Basic Components

- Beam Steering Optics
 - Imaging System
 - HeNe Alignment Laser
 - Polarizer-Attenuator-Analyzer
 - Gold Coated Copper Mirrors
 - Beam Expander
- Growth Chamber Optics
 - Aluminum Optics
 - In-house design and polishing
 - Reflaxicon, Scraper Mirror, Spherical Mirror
- Mechanical Drawing System
 - Synchronized Linear Stages

Laser Heated Pedestal Growth

Automatic Diameter Control System

Diameter variations ~1.7% were readily achieved

LMV Sapphire Fiber

Summary of Results

- For the first time, a submicron single crystal sapphire fiber for the propagation of lower order modes was fabricated via wet-acid etching
- Few mode operation was demonstrated, for the firsttime, in a single crystal sapphire fiber
- Reduction of the "effective" NA and modal volume was verified via an array of characterization techniques and test parameters
- A fully operational LHPG system was designed and constructed in-house for the fabrication of unique sapphire fiber structures

<u>RESEARCH PROGRESS</u>: DISTRIBUTED TEMPERATURE SENSING SYSTEM

Operating Wavelength Selection

Blackbody Radiation

• The Raman intensity of the Anti-Stokes and Stokes components is proportional to its differential cross section given by (*M. Hobel, Applied Optics, 1995*)

$$\frac{d\sigma_{AS}}{d\Omega}\Big|_{x} \approx \frac{1}{\lambda_{AS}^{4}} \frac{1}{\exp\left[\frac{hc\Delta\upsilon}{K_{B}T(x)}\right] - 1}$$
$$\frac{d\sigma_{S}}{d\Omega}\Big|_{x} \approx \frac{1}{\lambda_{S}^{4}} \frac{1}{1 - \exp\left[-\frac{hc\Delta\upsilon}{K_{B}T(x)}\right]}$$

• According to Planck's law, the radiation can be calculated as followed (*M. Planck, P. Blakiston's Son & Co, 1914*)

$$B(T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda k_B T} - 1}}$$

Scattering in Sapphire Fiber Experimental Set-Up

- Experimental setup for Raman scattering detection.
- Temperature distribution along the sapphire fiber.

Scattering in Sapphire Fiber

Temperature Dependence

Spectrum Peak Intensity Sapphire Raman signal with thermal background removed 2.5 4500 25 °C A 751 0 300 °C φ 4000 A 418 497 °C 680 °C S 418 3500 2 858 °C S 751 1033 °C 3000 (T)/I(300°C) Φ Counts (a.u.) 2500 1.5 2000 1500 1 Φ 1000 $\mathbf{\overline{x}}$ 500 0.5 200 400 600 800 1000 0 510 520 550 560 530 540 Wavelength (nm) Max temperature (^oC) B. Liu, Optics Letters, 2015 24 CENTER FOR PHOTONICS TECHNOLOGY

Scattering in Sapphire Fiber

Temperature Dependence

Peak Frequency

Raman DTS System Design

Experimental Set-Up

1 meter Sapphire Fiber

CENTER FOR PHOTONICS TECHNOLOGY

1 meter Sapphire Fiber

1 meter Sapphire Fiber

CENTER FOR PHOTONICS TECHNOLOGY

2 meter Sapphire Fiber

3 meter Sapphire Fiber

Spatial Resolution

- Sensing length: 3 meters
- Temperature: 1400°C
- Spatial resolution: 16.4 cm
 - Determined via 10% to 90% response distance

Raman DTS System

Summary of Results

- Raman fully-distributed ultra-high temperature sensing technique, a first-of-its-kind technology, was successfully demonstrated.
- A temperature standard deviation of 3.0°C (0.2% of full scale) was demonstrated in a 1 meter sapphire fiber.
- A maximum operating temperature of 1400°C was demonstrated (upper limit has yet to be determined)
- A spatial resolution <20 cm was achieved with a fiber sensing length of 3 m.

MILESTONES AND SCHEDULE

Project Milestones

LMV sapphire fiber

- Demonstrated design feasibility
- Developed fabrication processes
- Demonstrated fiber performance
- Fully-distributed temperature sensing system
 - Demonstrated design feasibility
 - Characterized Raman scattering response in sapphire fibers
 - Demonstrated system performance in fused silica optical fibers
 - Demonstrated prototype system in single crystal sapphire fibers

M. #	Title/Description	Planned Completion Date	Actual Completion Date		
1	Project Management Plan	5/15/2014	5/8/2014		
2	Modeling of LMV Sapphire Fiber & Sensing System	12/31/2014	12/31/2014		
3	Demonstration of LMV Sapphire Fabrication	6/30/2015	6/30/2015		
4	Demonstration of Sensing System	12/31/2015	12/31/2015		
5	Prototype System Test Results	6/29/2016	6/29/2016		
6	Final Report	12/31/2016	85%		

Milestone Success Criteria

- LMV sapphire fiber
 - Demonstrated significantly reduce modal volume (<< 50%)
 - Few mode and single mode operation
 - Minimum bend radius << 4 mm
 - Bend radius < 100 μm
- Fully-distributed temperature sensing system
 - Sapphire sensing lengths of 1, 2, and 3 meters
 - Spatial resolutions < 17 cm
 - Operating temperature ~ 1400°C

ID	Title		Description		Result	M.S.	Planned Completion	Actual Completion
		1.	50% modal volume reduction	1.	. >> 50% modal volume reduction		10/01/0014	10/01/0014
SCI	System Modeling	2.	Sensing length of 3 m	2.	Sensing length of 3 m	M2	12/31/2014	12/31/2014
		3.	$\frac{1}{20} \text{ cm} \qquad 3. \text{ Resolution } < 17 \text{ cm}$					
	LMV Sapphire Fiber	1.	40% reduction in modal volume	1.	. > 50 % modal volume reduction			
SC2		2.	Attenuation < 6 dB/m @ 355 nm2. Attenuation < 8 dB/m @ 532 nmMinimum bend radius < 25 mm		. Attenuation $< 8 \text{ dB/m} @ 532 \text{ nm}$	M3	6/30/2015	6/30/2015
		3.						
SC2	Distributed Sensing System	1.	Sensing length of 2 m	1.	. Sensing length of 3 m	M4	12/21/2015	12/21/2015
303		2.	Resolution < 20 cm	2.	. Resolution < 10 cm	1014	12/31/2013	12/31/2013
			Distributed Temperature Sensing:		Distributed Temperature Sensing:			
SC4	Prototype Test Results	1.	Sensing length of 3 m1.Sensing length of 3 m		M5	6/29/2016	6/29/2016	
			Resolution < 20 cm 2. Resolution		. Resolution < 17 cm			

36

Review Panel Recommendations

- All Recommendations have been addressed
- On schedule and budget

RPR #	Title/Description	Planned Completion Date	Actual Completion Date	Verification Method	Comments (progress toward achieving milestone, explanation of deviation from plan, etc.)		
R1	Material Characterization of Pre- and Post- Etched Sapphire Fibers	9/30/2016	9/30/2016	DOE Approval	Completed		
R2	"Back of the Envelope" Calculations to Predict Fiber and System Performance	3/30/2016	3/30/2016	DOE Approval	Completed		
R3	Identify a "Back-up Approach"/Alternative Strategies	12/30/2016	12/30/2016	DOE Approval	Completed		
R4	Engage Crystal Growth Experts for LHPG	9/30/2016	9/30/2016	DOE Approval	Completed		
R5	Evaluate Consistencies between Theoretical Anlyses and Experimentation/Manufacturability	12/30/2016	12/30/2016	DOE Approval	Completed		

Project Schedule

		BUDGET PERIOD 1							BUDGET PERIOD 2 E:						KEY PROJECT DATES				
	GANTCHART		Projec	t Year 1			Projec	t Year 2			Project	t Year 3		¥4	Planned	Planned End	Actual Start	Actual End	Commonte
Task #	Task Name	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Start Date	Date	Date	Date	Comments
1	Project Management and Planning														1/1/2014	5/15/2014	1/1/2014	5/8/2014	
2	Determine Technical Requirements														1/1/2014	5/15/2014	1/1/2014	5/8/2014	Completed
M1*	MILESTONE 1*		V												5/15/2014	(4/1/2014)*	4/28/	2014*	
	Optical Modeling of LMV Sapphire and														2/2/2014	12/20/2014	2/2/2014	12/20/2014	
3	Distributed Sensor System														2/3/2014	12/30/2014	2/3/2014	12/30/2014	
3.1	LMV Sapphire Fiber Modeling														2/3/2014	12/30/2014	2/3/2014	12/30/2014	Completed
	Sapphire Fiber Based High Temperature														4/1/2014	12/30/2014	1/1/2014	12/30/2014	completed
3.2	Distributed Sensing Modeling														4/1/2014	12/30/2014	4/1/2014	12/30/2014	
M2	MILESTONE 2				V										12/31	/2014	12/31	/2014	
	Demonstrate Feasibility of LMV Sapphire														4/2/2014	12/31/2015	2/1/2014	12/31/2015	
4	and Distributed Sensing System														-1/2/2014	12/31/2013	2/1/2014	12, 51, 2015	Completed
4.1	LMV Sapphire Fiber Fabrication														4/1/2014	6/26/2015	2/1/2014	6/30/2015	
M3	MILESTONE 3						√								6/29	/2015	6/29/2015		
	Distributed Sensing System Building and														5/1/2014	12/29/2015	2/1/2014	12/31/2015	
4.2	Demonstrating with Silica Fiber		_						-						5/1/2011	12,23,2013	2, 2, 2021	12,01,2010	Completed
M4	MILESTONE 4								V						12/31	/2015	12/31	/2015	
	Develop LMV Sapphire Fiber Temperature														9/1/2015	6/30/2016	7/1/2015	6/16/2016	
5	Sensing System											1			5/1/2015	0,00,2010	,, 1, 2010	0, 10, 2010	
5.1	Construct Prototype LMV Sapphire Fiber														9/1/2015	1/4/2016	9/1/2015	5/1/2016	
	Demonstrate Distributed High																		
	Temperature Sensing with LMV Sapphire														1/14/2016	5/18/2016	10/1/2015	6/16/2016	Completed
5.2	Fiber		_														-		
															5/19/2016	6/28/2016	6/1/2016	6/29/2016	
5.3	Perform Sensor Calibration and Verification										1					(0010			
M5	MILESTONE 5														6/29	/2016		1	
6	Construct & Evaluate Refined Prototype														6/30/2016	11/30/2016	7/16/2016		
6	Sensing System													-					
C 1															6/30/2016	8/22/2016	7/20/2016		
0.1	Construct Refined Version of LMV Samphire																		On Schedule
6.2	Eiher Distributed Sensing System														6/29/2016	9/15/2016	7/20/2016		No Cost Extension Granted
6.2	Test Sensor and Evaluate Performance														9/16/2016	10/28/2016	11/20/2016		
7	Propage and Submit Final Poport														11/11/2016	11/11/2016	10/20/2010		
															12/20	/2016	10/20/2010		
1/16	WILLESTONE 6														12/31	1/2010			

IMPACT, ACHIEVEMENTS, AND NEXT STEPS

Research Impact

- Technical Achievements
 - Fabrication of sub-micron single crystal sapphire fiber
 - Observation of Raman Stokes *and* Anti-Stokes peaks in sapphire fiber
 - Measurement of fiber attenuation in the time domain in sapphire fiber
 - Distributed Raman temperature measurements in sapphire fiber
 - Demonstrated few to single mode operation in sapphire fiber
- Student Support
 - <u>Full Support</u>: Cary Hill (Ph.D, '16). Bo Liu (Ph.D., '17), Yujie Cheng (Ph.D., '17)
 - <u>Partial</u>: Adam Floyd (Ph.D., '17), Jiaji He, (Ph.D., TBD), Hanna Heyl (Ph.D., TBD), Shuo Yang, (Ph.D., '19), Amiya Behera (Ph.D, '17) Chennan Hu (Ph.D., TBD), Sunny Chang (M.S., '16), Elizabeth Bonnell (M.E., '16)
- Faculty Training & Development
 - Zhihao Yu (Post-doc)
 - Daniel Homa (Research Scientist)
 - Haifeng Xuan (Research Associate)
 - Chenyuan Hu (Post-doc)

Research Products

Peer Reviewed Publications

- Hill, Cary, Daniel Homa, Bo Liu, Zhihao Yu, Anbo Wang, and Gary Pickrell. Submicron Diameter Single Crystal Sapphire Optical Fiber, Materials Letters 138, no. 0 (2015): 71-73.
- Bo Liu, Zhihao Yu, Zhipeng Tian, Daniel Homa, Cary Hill, Anbo Wang, and Gary Pickrell.
 Temperature dependence of sapphire fiber Raman scattering, Opt Lett. 2015; 40(9):2041-4.
- Cheng, Yujie, Cary Hill, Bo Liu, Zhihao Yu, Haifeng Xuan, Daniel Homa, Anbo Wang and Gary Pickrell. *Modal Reduction in Single Crystal Sapphire Optical Fiber*, Optical Engineering 54, no. 10 (2015): 107103.
- Yujie Cheng, Cary Hill, Bo Liu, Zhihao Yu, Haifeng Xuan, Daniel Homa, Anbo Wang, and Gary Pickrell. *Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber*, Optical Engineering, 55 (2016) 066101-066101.
- Liu, Bo, Zhihao Yu, Daniel Homa, Yujie Cheng, Gary Pickrell, and Anbo Wang. *Sapphire-Fiber-based Distributed High Temperature Sensing System*, Optics Letters, 41(18), 4405-4408.
- Hill, Cary, Dan Homa, Zhihao Yu, Yujie Cheng, Bo Liu, Anbo Wang and Gary Pickrell. Single Crystal Sapphire Optical Fiber, Applied Sciences (submitted for publication).
- Intellectual Property
 - U.S. Patent Application No. 62/057,291; *Processing Technique for the Fabrication of Submicron Diameter Sapphire Optical Fiber*, G. Pickrell, D. Homa, W. Hill, filed Sept. 30, 2014.
 - U.S. Patent Application No. 62/264,659. *Distributed Temperature Sensing System Using Optical Sapphire Waveguide*, A. Wang, G. Pickrell, B. Liu, Z. Yu., Dec. 2015.

Project Performance

- All Project Milestones Met On Time and On Budget
- All Success Criteria Met On Time and On Budget
- "First of Its Kind" Technologies
 - Fabrication of sub-micron single crystal sapphire fiber
 - Fabrication and demonstration of single mode sapphire fiber
 - Observation of Raman Stokes and Anti-Stokes peaks in sapphire fiber
 - Measurement of fiber attenuation in the time domain in sapphire fiber
 - Distributed Raman temperature measurements in sapphire fiber
- Dissemination of Findings
 - 5 peer reviewed publications, 1 submitted, 2 planned
 - 2 provisional patents filed
- Graduate Student Support (11)
- Faculty Training and Development (4)

Next Steps

- Compose manuscripts and submit for publication
- Generate and submit Final Report
- DTS system integration with LMV sapphire fiber
- Process development and optimization of LHPG system
- Submit continuation application
- Evaluate additional research opportunities for fiber and sensing technologies

Acknowledgements

Virginia Tech

44

Center for Photonics Technology (CPT) Gary Pickrell Anbo Wang Zhihao Yu Bo Liu Cary Hill Di Hu Adam Floyd Yujie Cheng Sunny Chang **Elizabeth Bonnell** Hann Heyl Zhiting Tian Haifeng Xuan Robert Blackwell Amy Hill, Jiaji He, Shuo Yang, Amiya Behera, Chennan Hu, Cindy Purdue, Chenyuan Hu, Nevada Davis

Department of Energy

National Energy Technology Laboratory Project Manager: Jessica Mullen Sydni Credle Susan Maley*

*Now with Electric Power Research Institute

THANK YOU FOR YOUR TIME

