Distributed fiber sensing systems for 3D combustion temperature field monitoring in coal-fired boilers using optically generated acoustic waves
(DE-FE0023031)

Project manager: Jessica Mullen, Barbara Carney
PIs: Xingwei (Vivian) Wang¹, Chengyu Cao², and Xinsheng Lou³

University of Massachusetts Lowell¹
University of Connecticut²
General Electric Power³
Advantages

- Combination of the advantages of
 - Optical fiber sensing:
 - Distributed sensing;
 - Survivability in harsh environments:
 - Immunity to electromagnetic interference
 - Acoustic sensing:
 - Noncontact approach
 - Penetration depth
- Other applications:
 - Corrosion monitoring
 - Imaging
Patent Application and Optioning

Patent application:

- PCT nationalization coming up in November, 2017.
- One company is interested in optioning UML 15-32 IP and explore its commercialization.
Outline

- Brief overview of DOE project
- Sensing system development
- Signal processing
- Temperature reconstruction algorithm
- Conclusions & Future work
Introduction

Reconstruct the 3D high temperature distribution within a boiler with a novel fiber optic distributed temperature sensing system that uses optically generated acoustic waves.

Overview of DOE project.

- Reconstruct the 3D high temperature distribution within a boiler with a novel fiber optic distributed temperature sensing system that uses optically generated acoustic waves.
Introduction

- Speed of acoustic waves depend on the temperature of gaseous medium.

- The TOF (time-of-flight) of an acoustic signal over a propagation path can be calculated as:

\[
TOF(l_j) = \int \frac{1}{C(x, y, z)} dl_j = \int \frac{1}{Z \sqrt{T(x, y, z)}} dl_j
\]

\(C(x, y, z)\) the velocity of sound at position \((x, y, z)\)
\(\frac{z}{\gamma}\) the ratio between the specific heats at constant pressure and volume of the gas
\(d(x, y, z)\) the reciprocal of velocity
\(j\) the number of paths;
Outline

- Brief overview of DOE project
- Sensing system development
 1. Photoacoustic generator
 - Principle
 - Tip generator
 - Sidewall generator
 2. Signal receiver
 - Fiber Bragg grating (FBG) fiber sensor
 - Fabry-Perot (F-P) fiber sensor
 3. Temperature measurement
 - Water temperature measurement
 - Steel plate temperature measurement
 - Air temperature test and reconstruction
 4. Distributed sensing capability test
 5. GE pilot test
 6. Furnace test
- Signal Processing
- Temperature reconstruction algorithm
- Conclusions
The PA principle is an optical approach to generate ultrasound signals [1, 2]. It involves a PA generation material which absorbs the optical energy from the laser and converts it into a rise in localized temperature.
Photoacoustic

Simulation of photoacoustic

2D-axisymmetric FEA model of the photoacoustic generator

Acoustic pressure distribution at 2 μs generated by an absorption layer (100 μm thick)

Learning with Purpose
Photoacoustic

Simulation of photoacoustic

Acoustic pressure at the monitoring point for different laser pulse durations (100, 150, and 200 ns.)

Acoustic pressure at the monitoring point for different layer thicknesses (10–140 μm)
Photoacoustic

Photoacoustic materials

Ultrasound signal strength generated by different photoacoustic materials

<table>
<thead>
<tr>
<th>Photoacoustic materials</th>
<th>First Test (mV)</th>
<th>Second Test (mV)</th>
<th>Third Test (mV)</th>
<th>Average (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Black 1</td>
<td>3.0</td>
<td>3.0</td>
<td>2.8</td>
<td>2.93</td>
</tr>
<tr>
<td>Carbon Black 2</td>
<td>2.9</td>
<td>2.5</td>
<td>2.6</td>
<td>2.67</td>
</tr>
<tr>
<td>Carbon Black 3</td>
<td>2.2</td>
<td>2.2</td>
<td>2.4</td>
<td>2.27</td>
</tr>
<tr>
<td>Carbon Black 4</td>
<td>2.4</td>
<td>2.6</td>
<td>2.5</td>
<td>2.50</td>
</tr>
<tr>
<td>Carbon Black 5</td>
<td>2.1</td>
<td>2.1</td>
<td>2.2</td>
<td>2.13</td>
</tr>
<tr>
<td>Gold-nanocomposite</td>
<td>2.5</td>
<td>2.2</td>
<td>2.3</td>
<td>2.33</td>
</tr>
</tbody>
</table>

Different photoacoustic materials

- Carbon Black 1-4 are 20% Carbon black (partial size 20 nm) + PDMS.
- Carbon Black 5 is 20% Carbon black (partial size 101 nm) + PDMS.
- Gold-nanocomposite is 12% Gold-nanoparticle + PDMS.
- Carbon Black 5 had the lowest ultrasound signal, due to it being used many times, which may have caused damage to it.
- Carbon Black 3 generated a low ultrasound signal because the thickness and the size of it was smaller than the others.
Tip generator

Photoacoustic materials coated on fiber tip

Structure of the tip generator

Microscope photo of the tip generator [1]

Profile of the generated ultrasound signal [2]

Bandwidth is wider than 20 MHz
Tip generator

Photoacoustic materials coated on glass slide

![Experimental setup](image)

- Note: This fiber optic ultrasound transducer system worked at a distance of 1 meter.

Ultrasound signals at different distances.
Sidewall generator

Sidewall configuration 1

Coat gold nanocomposite on the sidewall of optical fibers [4].

Experiment setup: test a sidewall generator.

Note: Generated ultrasound signal was from the sidewall of a 400/425 μm fiber. A 532 nm Nd:YAG nanosecond laser (Surelite I-10, Continuum) was utilized as the optical radiation source. A hydrophone (HGL-0200, Onda) was used as a receiver to collect the ultrasound signals.
Sidewall generator

Sidewall configuration 2

Sidewall fiber generator mounted on an aluminum plate [4].

Experimental setup: test the sidewall ultrasound generator configuration 2.

Acoustic signal generated from sidewall ultrasound generator configuration 2.

Note: Ultrasound signal generated from this configuration on the aluminum plate was much higher than pervious configuration when the laser power and detection distance is the same.
Fiber Bragg Grating (FBG) fiber sensor

Fiber Bragg Grating performance comparison with hydrophone

PZT as signal generator, FBG as signal receiver

PZT as signal generator, Hydrophone as signal receiver

- Note: FBG fiber sensor got same results as hydrophone in the frequency domain. It showed that the FBG fiber sensor could be used to detect the ultrasound signal in water.
Fabry-Perot (F-P) fiber sensor

F-P fiber sensor structure

Structure of the F-P fiber sensor

Packaging of the F-P fiber sensor

Resonant Frequency:

\[f_{00} = \frac{\alpha_{00}}{4\pi} \left[\frac{E}{3w(1-\mu^2)} \right]^{1/2} \left[\frac{h}{(d/2)^2} \right] Hz \]

\(f_{00} \) is the lowest resonant frequency;

\(\alpha_{00} \) is a constant related to the vibrating modes, \(\alpha_{00} = 10.21 \);

\(w \) is the mass density of the quartz, \(w = 2.50 \text{ g/cm}^3 \);

\(E \) is Young’s modulus of quartz coverslip, \(E = 7.20*10^{10} \text{ Pa} \);

\(\mu \) is the Poisson ratio of quartz, \(\mu = 0.17 \);

\(h \) is the thickness of the diaphragm, \(h = 0.10 \text{ mm} \);

\(d \) is the diameter of the diaphragm, \(d = 2.54 \text{ mm} \).

\(f_{00} \) could be calculated as 1.8805e+05 Hz which is 0.19 MHz.

Sensitivity (How much the center of the diaphragm will be deformed when a certain acoustic pressure applied on it):

\[Y_c = \frac{3(1-\mu^2)(d/2)^4}{16Eh^3} \cdot 10^9 \text{ (nm/Pa)} \]

\(E \) is the quartz’s Young’s modulus, \(E = 7.2*10^{10} \text{ Pa} \);

\(\mu \) is the quartz Poisson ratio, \(\mu = 0.17 \);

\(h \) is the thickness of the quartz coverslip, \(h = 0.10 \text{ mm} \);

\(d \) is the diameter of the aluminum hole, \(d = 2.54 \text{ mm} \);

\(Y_c = 0.0032 \text{ nm/Pa} \).
At the distance of 10 mm, the Vpp from the microphone and the FP sensor was 4.50 mV and 2.23 mV, respectively.

- The F-P fiber sensor (V20161202TEST2) has half the sensitivity of the microphone.
- The sensitivity of the microphone is 22.51 mV/Pa. Therefore, the F-P fiber sensor is 11.25 mV/Pa.
- The time cycle of the ultrasound signal detected by the F-P fiber sensor is shown on the left Fig which was 5.50 µs.
- The frequency was calculated as: \[
\frac{1}{\text{Time cycle}} = \frac{1}{5.50 \, \mu\text{s}} = 0.18 \, \text{MHz}.
\]
- It was very close to 0.19 MHz, meaning it matched the resonant frequency calculation results.
Water temperature measurement

Schematic diagram of the water temperature measurement setup [1].

Photo of the water temperature measurement setup.

Travel time V.S. water temperature based on Marczak equation.

Experimental results: water temperature V.S. travel time

- Note: It demonstrated the temperature measurement capability of the fiber optic ultrasound transducer system in water.
Aluminum plate temperature measurement

Schematic diagram of steel plate temperature measurement [5].

Experimental results of aluminum plate temperature test in (a) time domain and (b) frequency domain by FBG

- Note: FBG fiber sensor was used as the signal receiver in the solid condition. It proved the fiber optic ultrasound transducer system.
Air temperature test

Experimental setup: Measure the temperature of a torch flame [4].

- Note: It demonstrated that fiber optic ultrasound transducer system was able to measure the air temperature.
(Top view)

Note: Air temperature reconstruction was done by using this fiber optic ultrasound transducer system [11].
Distributed sensing capability test

◆ Sidewall fiber generators (G1 and G2) and the FBG sensors (R1 and R2) were attached on the ridge of the rebar. The FBG sensors were attached along the ridge of rebar using epoxy.
Distributed sensing capability test

Ultrasound signal detected by R1

Ultrasound signal detected by R2

◆ Note: Ultrasound signal was detected in both receivers. This experimental demonstrated that the fiber optic ultrasound transducer system was able to use as multiple points at one time.
GE pilot test

Note: The test location was chosen within an exhausting pipe of the ISBF. There are three standard ports along the pipe. The temperature within the pipe is around 480 °F when the burner starts. Two sensing systems which are based on an electrical method and an optical method, respectively, were used in the pilot test.
GE pilot test

A typical acoustic data obtained from the electrical temperature sensing system.

A typical acoustic signal from the optical temperature sensing system.

- Note: Both sensing systems successfully picked up the acoustic signal changes due to the temperature variation. Both sensing systems survived the high temperature environment.
- The optically generated acoustic signal was not strong enough. This also limited the distance between the acoustic emitter and the acoustic receiver.
- More discussion about the GE pilot test is shown on the signal processing part.
Furnace test

Note: The F-P fiber sensor (V20170207TEST1) was used as the signal receiver. The Carbon Black shone by a 1000/1035 µm fiber was used as the acoustic signal generator. The water cooling system was used in this test. The distance between the generator and the receiver was fixed as 10 mm. The furnace temperature was set at room temperature (30 ºC) to high temperature (500 ºC). The furnace door was covered by aluminum foil during the test.
Furnace test

Photo of furnace test setup
Furnace test

Ultrasound signal when the furnace setting temperature at 30 ºC (room temperature) and 500 ºC.

Note: Since we didn’t know if the distance between generator and receiver was exactly 10 mm, we used the sound speed at 30 ºC which was 349.02 m/s to calculate the real distance.

- 349.02 m/s × 30.82 µs = 10.76 mm
- \[
\frac{10.76 \text{ mm}}{21.76 \mu s} = 494.49 \frac{\text{m}}{s},
\]
 which represent 334.63 ºC according to the temperature and speed equation; [http://www.sengpielaudio.com/calculator-speedsound.htm]
Furnace test

<table>
<thead>
<tr>
<th>Furnace setting temperature (°C)</th>
<th>Temperature reading between the generator and the receiver from a thermocouple (°C)</th>
<th>Temperature calculated based on the travel time (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>100</td>
<td>49</td>
<td>53.82</td>
</tr>
<tr>
<td>300</td>
<td>207</td>
<td>212.2</td>
</tr>
<tr>
<td>500</td>
<td>350</td>
<td>334.63</td>
</tr>
</tbody>
</table>

The relationship between the different temperatures.

Thermocouple reference temperature compared with temperature calculated based on travel time at the same furnace setting temperature.
Outline

- Brief overview of DOE project

- Sensing system development

- Signal processing and temperature field reconstruction
 1. Signal processing for pulsed acoustic signal
 2. Signal processing for coded sinusoidal acoustic signal
 3. Temperature reconstruction algorithm with GRBF

- Conclusions & Future work
The idea of signal processing:
Maximum value of correlation indicates signal arrival.

Signal: Maximum value of correlation (signal & reference coincide in time)
Noise: Value of correlation without signal
SNR: Signal to noise ratio (Signal/Noise)

The procedure of signal processing is shown as follow:
 • Filtered signal with band-pass filter: 200kHz – 250kHz
 • Sliding correlation: two methods
Step 1: Band filtering

Using Chebyshev filter with pass-band: 200kHz to 250kHz
Step 2: Sliding Correlation (Method 1)

- **Method 1:**
 1. Obtain envelopes of both reference and filtered signals
 2. Calculate correlation of envelopes

Signal to noise ratio (SNR) > 300
Step 2: Sliding Correlation (Method 2)

- **Method 2:**
 1. Calculate correlation between filtered signal and reference
 2. Obtain envelope of correlation

Signal to noise ratio (SNR) > 300
Overall Pilot Test Results

<table>
<thead>
<tr>
<th>Case</th>
<th>1st method</th>
<th>Relative Arrival Time (us)</th>
<th>2nd method</th>
<th>compare to 14</th>
<th>Relative Arrival Time (us)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between 1</td>
<td>4415.00</td>
<td>-217.00</td>
<td>4402.00</td>
<td>-283.00</td>
<td>-5.66</td>
</tr>
<tr>
<td>Combustion 1</td>
<td>4850.00</td>
<td>218.00</td>
<td>4926.00</td>
<td>241.00</td>
<td>4.82</td>
</tr>
<tr>
<td></td>
<td>4603.00</td>
<td>-29.00</td>
<td>4648.00</td>
<td>-37.00</td>
<td>-0.74</td>
</tr>
<tr>
<td></td>
<td>4580.00</td>
<td>-52.00</td>
<td>4623.00</td>
<td>-62.00</td>
<td>-1.24</td>
</tr>
<tr>
<td>Between 2</td>
<td>4488.00</td>
<td>-144.00</td>
<td>4420.00</td>
<td>-265.00</td>
<td>-5.30</td>
</tr>
<tr>
<td>Combustion 2</td>
<td>4609.00</td>
<td>-23.00</td>
<td>4652.00</td>
<td>-33.00</td>
<td>-0.66</td>
</tr>
<tr>
<td></td>
<td>4589.00</td>
<td>-43.00</td>
<td>4634.00</td>
<td>-51.00</td>
<td>-1.02</td>
</tr>
<tr>
<td></td>
<td>4613.00</td>
<td>-19.00</td>
<td>4653.00</td>
<td>-32.00</td>
<td>-0.64</td>
</tr>
<tr>
<td>Between 3</td>
<td>4493.00</td>
<td>-139.00</td>
<td>4436.00</td>
<td>-249.00</td>
<td>-4.98</td>
</tr>
<tr>
<td>Combustion 3</td>
<td>4622.00</td>
<td>-10.00</td>
<td>4626.00</td>
<td>-59.00</td>
<td>-1.18</td>
</tr>
<tr>
<td></td>
<td>4598.00</td>
<td>-34.00</td>
<td>4646.00</td>
<td>-39.00</td>
<td>-0.78</td>
</tr>
<tr>
<td></td>
<td>4620.00</td>
<td>-12.00</td>
<td>4671.00</td>
<td>-14.00</td>
<td>-0.28</td>
</tr>
<tr>
<td>Between 4</td>
<td>4630.00</td>
<td>-2.00</td>
<td>4565.00</td>
<td>-120.00</td>
<td>-2.40</td>
</tr>
<tr>
<td>Combustion 4</td>
<td>4617.00</td>
<td>-15.00</td>
<td>4666.00</td>
<td>-19.00</td>
<td>-0.38</td>
</tr>
<tr>
<td></td>
<td>4640.00</td>
<td>8.00</td>
<td>4689.00</td>
<td>4.00</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>4657.00</td>
<td>25.00</td>
<td>4690.00</td>
<td>5.00</td>
<td>0.10</td>
</tr>
<tr>
<td>Combustion 5</td>
<td>4611.00</td>
<td>-21.00</td>
<td>4656.00</td>
<td>-29.00</td>
<td>-0.58</td>
</tr>
<tr>
<td></td>
<td>4632.00</td>
<td>0.00</td>
<td>4685.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>4630.00</td>
<td>-2.00</td>
<td>4677.00</td>
<td>-8.00</td>
<td>-0.16</td>
</tr>
<tr>
<td>Between 5</td>
<td>4520.00</td>
<td>-112.00</td>
<td>4467.00</td>
<td>-218.00</td>
<td>-4.36</td>
</tr>
<tr>
<td>Combustion 6</td>
<td>4523.00</td>
<td>-109.00</td>
<td>4481.00</td>
<td>-204.00</td>
<td>-4.08</td>
</tr>
<tr>
<td></td>
<td>4593.00</td>
<td>-39.00</td>
<td>4644.00</td>
<td>-41.00</td>
<td>-0.82</td>
</tr>
<tr>
<td></td>
<td>4623.00</td>
<td>-9.00</td>
<td>4676.00</td>
<td>-9.00</td>
<td>-0.18</td>
</tr>
</tbody>
</table>
Overall Pilot Tests Results

Arriving Time Interval in combustion using different method

Arriving Time Using Different Method

- Relative Arrival Time (µs)
- Method1
- Method2

Page 37
PI: Xingwei Wang
Signal Processing for Coded Sinusoidal Signals

Case 2: Code Division Multiple Access (CDMA) Scheme

- Orthogonal Code based coding:
 - Enable parallel multiplexing mode
 - Multi-channel
 - Increase Signal to Noise Ratio (SNR)

Method:
Assign each emitters with a code from a set of orthogonal pseudo-random sequences
Design Parameters

- **Design Parameters**
 - \(f \): the acoustic carrier signal frequency (fixed during the test)
 - \(L \): Number of bits in the code
 - \(M \): cycles of carrier signal for one bit of code

- **Performance**
 - Number of channels: \(L \)
 - Time-of-flight (TOF) sampling rate: \(\frac{f}{LM} \)
 - SNR and uncertainty: Proportional to \(LM \)
Analysis for SNR and Uncertainty

- The signal captured by the i-th receiver at time index
 \[I_i(m,n,k) = S_0(m,n,k) + D(m,n,\alpha,\beta)P_i(k) \]
 - $D(m,n,\alpha,\beta)P_i(k)$ acoustic signal with its magnitude $P_i(k)$ coded as pseudorandom sequences
 - $S_0(m,n,k)$ noise and other transmitters’ signal
 - m, n spatial distribution of the acoustic signal

- Correlation and autocorrelation
 - Correlation of the received signal with the original acoustic signal:
 \[R_i(k) = \sum_{k-N}^{k} I(m,n,k)P_i(k), \]
 where $N = L \times M$, is the length of signal $P(k)$.
 - Correlation of the noise signal with original acoustic signal:
 Assume the distribution of $S_0(m,n)$ is at mean 0, with variance σ^2
 \[R_0(k) = \sum_{k-N}^{k} S_0(m,n,k)P_i(k), \]
 \[\text{var}[R_0(k)] = \frac{\sigma^2}{N} \sum_{k-N}^{k} P_i(k) = \sigma_n^2. \]
 If S_0 and P_i are irrelevant, $R_0(k)$ would be very close to 0.
SNR Simulation Results

- SNR testing results for different length (fixed f and M)
 -- add Gaussian white noise as background noise

SNR(dB) = 10log_{10}\left(\frac{P_{signal}}{P_{noise}}\right) = 20log_{10}\left(\frac{A_{signal}}{A_{noise}}\right).

<table>
<thead>
<tr>
<th>Order n</th>
<th>L (2^n - 1)</th>
<th>SNR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>31</td>
<td>-10</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>-20</td>
</tr>
<tr>
<td>7</td>
<td>127</td>
<td>-25</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>-30</td>
</tr>
<tr>
<td>9</td>
<td>511</td>
<td>-35</td>
</tr>
<tr>
<td>10</td>
<td>1023</td>
<td>-40</td>
</tr>
<tr>
<td>11</td>
<td>2047</td>
<td>-45</td>
</tr>
</tbody>
</table>
Pilot Test Setup

- Pilot test setup:
 - Emitter: PZT -- sinusoidal acoustic signal (from pilot test measurement)
 activate emitter *twice*:
 at t = 8ms & at t = 16ms.
 - Frequency of PZT: $f = 400kHz$
 - Sampling rate: 50MHz

- Signal coding is simulated using segments of experimental data
 - $L = 31$ bits per code
 - $M = 100$ cycles per bit
 - Allows 31 channels simultaneously
 - ToF sampling rate = 129 Hz
 - SNR (simulated in following slides)
SNR

BPSK demodulation step 1:

BPSK demodulation step 2:

Decoding:

Signal to noise ratio (SNR)
SNR - Continued

Same noise

Multiply signal by

0.01

0.00015 (still work)

0.0001 (starting to fail)

Signal to noise ratio (SNR) ≈ \(\frac{1}{0.00015} > 6000 \)
On-going work: Uncertainty Analysis

Correlation of the original acoustic signal

ΔT is the uncertainty for TOF measurement.
Considering a simplified free field that acoustic attenuation is only due to scattering. A doubling of the distance from a noise source reduces the sound pressure with 6dB.

Signal Processing: Results

<table>
<thead>
<tr>
<th></th>
<th>Optically driven pulse signal</th>
<th>PCT code modulated sin wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR (20cm distance)</td>
<td>300 (24.7dB)</td>
<td>6000 (378dB)</td>
</tr>
<tr>
<td>Signal duration</td>
<td>0.2ms (receiver side)</td>
<td>7.8ms</td>
</tr>
<tr>
<td>Correlation signal width</td>
<td>(\approx 0.3) ms (Better for uncertainties)</td>
<td>(\approx 2.5) ms</td>
</tr>
<tr>
<td>Expected distance that ToF can still be picked up*</td>
<td>3m</td>
<td>15m</td>
</tr>
</tbody>
</table>

*Using same emitter and receiver setup as in pilot tests

Overall efficiency similar
Temperature Field Reconstruction Algorithm

- polynomial interpolation approximation and Taylor expansion
 - a finite summation of polynomial series with residual error
 - a global method, for function with local property, it cannot demonstrate good accuracy

- Fourier parameterization
 - a summation of simple oscillating functions (sines and cosines)
 - Gibbs Phenomenon: large oscillations near the jump discontinuity
 - cannot be applied to complex geometries

- GRBF
 - better approximation capabilities for most nonlinear functions
 - superior in scalability
 - more efficient for higher dimensional space and complex geometry
 - exponentially convergent
 - good local property
Temperature Field Reconstruction Algorithm with GRBF

- GRBF
 \[\phi_j(X) = e^{-\frac{\|X-X_j\|^2}{2\sigma_j^2}} \]
 - \(X_i\) and \(\sigma_j\) are the predefined center and variance, \(X\) is position with 3 dimensions
 - Any continuous nonlinear function can be approximated by the summation of basis functions with appropriate weights
 \[f(X) \approx \sum_{i=1}^{N} \omega_i \phi_i(X) \]

- The relationship between speed of acoustic waves and temperature is as following:
 \[v = z\sqrt{T(x, y, z)} \]

- We can approximate the temperature field via GRBF:
 \[(z\sqrt{T(x, y, z)})^{-1} = \frac{l_k}{t_k} = \sum_{i=1}^{M} \omega_i \Phi_i(x, y, z) = \sum_{i=1}^{M} \omega_i \exp\{-[(x-X_i)^2+(y-Y_i)^2+(z-Z_i)^2]/2\tau^2\} \]
 \[= \sum_{i=1}^{M} \omega_i \exp\left(-\frac{P_{ik}^2}{2\tau^2}\right) \]
 - \(P_{ik}\) is the distance from center of the \(i_{th}\) basis function to the \(k_{th}\) path.
Design Parameter

N: The number of basis functions

Simulation results for different choice of N

<table>
<thead>
<tr>
<th>N</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average absolute error</td>
<td>81.31°C</td>
<td>28.57°C</td>
<td>27.63°C</td>
<td>27.14°C</td>
<td>25.28°C</td>
<td>26.60°C</td>
<td>23.58°C</td>
</tr>
<tr>
<td>Average relative error</td>
<td>6.94%</td>
<td>2.53%</td>
<td>2.46%</td>
<td>2.21%</td>
<td>2.19%</td>
<td>2.18%</td>
<td>1.98%</td>
</tr>
</tbody>
</table>

- Larger N leads to smaller error
- Benefits decreases as N is large
Simulation Results with GRBF

- 2D temperature field case I:
 Unimodal symmetric
 \[T(x, y) = 1000 + 600 \sin(\pi x / \text{length}) \sin(\pi y / \text{height}) \]

Notes: In the simulation 10 sensors were evenly distributed, 10 basis functions were used, and 24 paths were chosen.
Simulation Results with GRBF

- 2D temperature field case II:

 Unimodal deflection

 \[T(x, y) = 600 \exp((-(x - 4)^2) / \text{length} - ((y - 3)^2) / (2 * \text{height})) + 1000 \]

 Notes: In the simulation 10 sensors were evenly distributed, 10 basis functions were used, and 24 paths were chosen.
Simulation Results

Reconstruction Error

<table>
<thead>
<tr>
<th>Model</th>
<th>Maximum absolute error</th>
<th>Maximum relative error</th>
<th>Average absolute error</th>
<th>Average relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unimodal symmetric</td>
<td>64.6003°C</td>
<td>4.97%</td>
<td>23.5141°C</td>
<td>2.68%</td>
</tr>
<tr>
<td>Unimodal deflection</td>
<td>89.8020°C</td>
<td>8.95%</td>
<td>24.9697°C</td>
<td>2.19%</td>
</tr>
</tbody>
</table>
Initial Uncertainty Analysis

Suppose N is the number of basis functions, and M is the number of paths.

Without measurement noise, we have
\[\int \sum_{i=1}^{N} \omega_i \phi_i(x, y, z) dl = t_j \quad (i=1, \ldots, N; j=1, \ldots, M) \]

which can be written as
\[
\begin{bmatrix}
\int \phi_1(x, y, z) dl \\ \vdots \\ \int \phi_N(x, y, z) dl
\end{bmatrix}
+ \begin{bmatrix}
\int \phi_1(x, y, z) dl \\ \vdots \\ \int \phi_N(x, y, z) dl
\end{bmatrix} =
\begin{bmatrix}
\omega_1 \\ \vdots \\ \omega_N
\end{bmatrix}
=
\begin{bmatrix}
t_1 \\ \vdots \\ t_M
\end{bmatrix}
\]

With measurement noise, we have
\[\int \sum_{i=1}^{N} \bar{\omega}_i \phi_i(x, y, z) dl = t_j + \Delta t_j \quad (i=1, \ldots, N; j=1, \ldots, M) \]

which can be written as
\[
\begin{bmatrix}
\int \phi_1(x, y, z) dl \\ \vdots \\ \int \phi_N(x, y, z) dl
\end{bmatrix} + \begin{bmatrix}
\int \phi_1(x, y, z) dl \\ \vdots \\ \int \phi_N(x, y, z) dl
\end{bmatrix} =
\begin{bmatrix}
\bar{\omega}_1 \\ \vdots \\ \bar{\omega}_N
\end{bmatrix}
=
\begin{bmatrix}
t_1 + \Delta t_1 \\ \vdots \\ t_M + \Delta t_M
\end{bmatrix}
\]

Note: Measurement noise in traveling time will propagate into the integral process for reconstruction.
Measurement noise [Add 1% error in ToF] will propagate into the integral process for reconstruction

1. The maximum absolute error is 91.98 °C
2. The average absolute error is 17.23 °C
3. The maximum relative error is 8.82%
4. The average relative error is 1.47%
Experimental Results (candle)

- Sensor location: sensors are distributed symmetrically (Fig.1)
- Reconstruction results of temperature field in 2D (Fig.2)

Fig.1. Sensor distribution

Fig.2. Temperature field
Future Work for Temperature Field Reconstruction

- Assumes no knowledge about the dynamics of temperature field
- A dynamic model of the temperature field exists

Key idea
- Utilize known dynamic model of the temperature field
- What to be estimated are high dimensional states of the dynamic model
- Measurements can be utilized to update states of the temperature field recursively (Kalman Filter).
Outline

- Brief overview of DOE project
- Sensing system development
- Signal processing and temperature field reconstruction
- Conclusions & Future work
Conclusions

What we have achieved.
1. Temperature test in water condition has been conducted.
2. Temperature test in a steel plate has been conducted.
3. Temperature test in air condition (furnace) has been conducted.
 The temperature range for our all-optical fiber system in air condition (furnace) was 19 ºC - 500 ºC.
4. The pilot test conducted in GE has proved our system is workable.
5. ToF can be detected with high SNR in pilot tests.
6. Optically driven acoustic emitter is comparable in efficiency to PCT transducer used.
7. Based on the pilot test results, it is optimistic that the sensors and signal processing will work in the scale of meters.
7. This Project has partially supported 1 postdoctoral researcher, 3 PhD students, 1 master student and 2 undergraduate students.
8. Five conference papers have been published. Three journal papers are in preparation.
Acknowledgement

1. We would like to thank the Department of Energy and our project manager, Jessica Mullen, for sponsoring this work (FE0023031).

2. We would like to thank Dr. Xinsheng Lou and Mr. Carl Edberg at General Electric for supporting the pilot test.

3. We would like to thank Mr. Junwei Su for assisting in machining the packaging system.

Patent

Patent:
- PCT nationalization coming up in November.
- Academic Tech Ventures (ATV) INC. will option UML 15-32 IP and explore its commercialization.