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*Governing dynamics is very complicated.
*Multiple phases, interaction between
particles and fluid, varying sizes of the
particles makes it very difficult to predict
the behavior of the bed. -Greater surface area of contact for
fluid and solid allowing for better
mixing.

*Applications in process industry and
nuclear engineering

The arrival time of a space probe traveling
to Saturn can be predicted more accurately

than the behavior of a fluidized bed
chemical reactor! (Geldart, 1986)
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Multphase Flow with Interphase eXchange

The Multiphase Flow with Interphase eXchanges (MFiX) software
package is

* a multiphase Computational Fluid Dynamics (CFD) software
* developed by NETL (Opensource)
* alegacy code written in Fortran



Multphase Flow with Interphase eXchange
(MFiX)
*CFD code for modeling reacting multiphase systems.

30 years of development history with a wide range of
customers.

*Successfully modeling the complexity of fluidized
bed reactor flow.
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*40% of value added by the U.S
chemical industry is related to
particle technology- Ennis et al.
Chem Eng .Progress 1994.
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*Scale up of fluidized beds is a

daunting task- Knowlton et al.
Powder technology, 2005.



Multphase Flow with Interphase eXchange (MFiX)

Gas-solids are addressed by solving
* coupled continuity

* momentum conservation

* energy equations, and

e parameterizing many effects such
e drag force, buoyancy,
* virtual mass effect,
 |ift force,
*  Magnus force,
 Basset force,
Faxen force, etc.

Provides a suite of models that treat the carrier phase (gas phase)
and disperse phase (solids phase) differently.

e MFIX-TFM (Two-Fluid Model)

e MFIX-DEM (Discrete Element Model)

MFIX-PIC (Multiphase Particle in Cell)



In nutshell, though MFiX is widely used by the fossil fuel
reactor communities to model and understand the multiphase
physics in a circulating fluidized, its overall utility of the
multiphase models remains limited due to the computational
expense of large scale simulations. The time-to-solution
however can be reduced by leveraging state-of-the-art
preconditions and linear solver libraries where majority of
processor-level time is spent in solving large systems of
linearized equations.



Challenges with MFiX

CFD Mesh MFIX Simulation
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Geometry

*Poor Convergence, especially in complex
non-linear problems.

*Increased number of lterations as a
result of poor convergence.

*Basic preconditoners.

*Not as scalable as one would like.



Technical goal

The technical goal of this project is to develop, validate and implement
advanced linear solvers to replace the existing linear solvers that are used by
the National Energy Technology Laboratory’s (NETL) open source software
package Multiphase Flow with Interphase eXchanges (MFIX). This goal will be
achieved by integrating Trilinos, a publicly available open-source linear
equation solver library developed by Sandia National Laboratory. The project
will demonstrate scalability of the Trilinos- MFIX interface on various high-
performance computing (HPC) facilities including the ones funded by the
Department of Energy (DOE).

The expected results of the project will be reduction of computational time
when solving complex gas-solid flow and reaction problems in MFIX, and
reduction in time and cost of adding new algorithms and physics based
models into MFIX



Objectives

* Create a framework to integrate the existing MFIX
linear solver with Trilinos linear solver packages,

* Evaluate the performance of the state-of-the-art
preconditions and linear solver libraries in Trilinos
with MFIX, and

e Test three dimensional (3D) MFIX suites of problems
on massively parallel computers with and without
GPU acceleration.



Proposed Tasks and subtasks



Tasks

Task 1.0 — Project Management and Planning
Task 2.0 — Assembly of Optimum Trilinos Linear Equation Package for Integration
with MFIX
Subtask 2.1: Setup a GIT/version-control repository
Subtask 2.2: Select the optimum Trilinos software package
Subtask 2.3: Develop a ForTrilinos based Fortran interface for MFIX
Task 3.0 — Performance Evaluation of Preconditions and Linear Solver Libraries
Subtask 3.1: Test and compare the linear equation solver packages in Trilinos
Subtask 3.2: Perform a scalability analysis of Trilinos-MFIX
Subtask 3.3: Improve performance of Trilinos-MFIX
Task 4.0 —Performance Evaluation of MFIX with the Trilinos Linear Solver on
Massively Parallel Computers
Subtask 4.1: Secure computational time on massively parallel computers
Subtask 4.2: Compile Trilinos-MFIX on the selected massively parallel
computer(s)
Subtask 4.3: Run simulations of a fluidized bed test problems with various
particle sizes and shapes



Project milestones, budget and schedule

Expected
Related task or Completion
Title Description subtask Date Success Criteria
Budget Year 1:
Milestone 1.1 GIT repository setup Setup GIT/version-control Subtask 2.1 Q1 A working repository
completed repository for Trilinos tested by at least three
MFIX researchers
Milestone 1.2 Best Trilinos linear Choose the best Trilinos Subtask 2.2 Q2 Source code for the
solver package linear solver package for decided package
decided MFIX uploaded to the GIT
repository
Milestone 1.3 Fortran interface for Develop Fortran interface Subtask 2.3 Q3-4 A working version of
Trilinos MFIX for the Trilinos linear the Fortran interface
created solver to communicate uploaded
with MFIX
Budget Year 2:
Milestone 2.1 >30% Linear solved Test the linear solvers for Subtask 3.1 Q5 20% or better linear
speedup achieved its performance solver speedup
achieved
Milestone 2.2 Scalability issues Perform scalability analysis Subtask 3.2 Q6 Scalability testing for
identified of Trilinos-MFIX up to 1024 cores
performed
Milestone 2.3 Bottlenecks to Perform code profiling and Subtask 3.3 Q7-8 Code profiling on
scalability identified identify bottlenecks Trilinos profiler
and removed completed and
bottlenecks addressed
for one HPC system
Budget Year 3:
Milestone 3.1 Trilinos MFIX Compile Trilinos-MFIX on Subtask 4.3 Q9 Trilinos MFIX
compiled on various various cloud/HPC compiled on 3 HPC
OS/architectures computers (UTEP, DOE-Sandia,
and one more)
Milestone 3.2 MPFIX tests suites Run simulations with Subtask 4.3 Q10 All 2D runs and one
completed various particle sizes and 3D tests validated
shapes of fluidized bed
riser test problems
Milestone 3.2 Trilinos MFIX Analyze Trilinos-MFIX Subtask 4.3 Ql11-12 Report submitted

performance
analysis completed

performance for various
computing architectures
and fluidzed-test problems




Project schedule

Task Title Budget Period: 1% half Budget Period: 2" half
Q7108 Q9] Q10 Q11

Program
Management
Software
preparations
Subtask 2.1
Subtask 2.2
Subtask 2.3
Trilinos MFIX
Linear Solver
Subtask 3.1
Subtask 3.2
Subtask 3.3
MPFIX suite tests
Subtask 4.1
Subtask 4.2
Subtask 4.3
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Project status

* Perform scalability analysis of Trilinos-MFIX
*  Conduct scalability tests of the Trilinos-MFIX package on single node and multi-core computer
clusters using distributed/shared or in hybrid environment HPC systems. Test multi-core clusters
containing 4, 16, 64, 128, 512, 1024, 8192(?) cores.
* Address Trilinos-MFIX performance bottlenecks via profiling and debugging tools in
Trilinos
* Run fluidized bed test problems (various particle sizes and shapes, 2D/3D, Small/Large
Scale, etc.)



Technical approach

One of the main challenges for any software development is keeping the computer code up-to-
date with the advancement in applied mathematics, software and hardware development in
computational science and engineering. Realizing the challenge, the Computer Science
Research Institute (CSRI) group at Sandia National Laboratories (Sandia) has developed and
continues to develop scalable solver algorithms and software through next-gen (exa-scale,
peta-scale, exteme-scale, etc.) computing investment. The project is called Trilinos project.

Funded by various DOE entities mainly NNSA -
Advanced Simulation and Computing (ASC)/DOE
Office of Science (SciDAC), Advanced Scientific
Computing Research (ASCR)

Note: Slides in this topic mostly borrowed from
M.Heroux & other trilinos members



Trilinos

The Trilinos Project is an effort to develop and implement robust algorithms and
enabling technologies using modern object-oriented software design, while still
leveraging the value of established libraries such as PETSc, Metis/ParMetis, SuperLU,
Aztec, the BLAS and LAPACK. It emphasizes abstract interfaces for maximum flexibility
of component interchanging, and provides a full-featured set of concrete classes that
implement all abstract interfaces. Research efforts in advanced solution algorithms and
parallel solver libraries have historically had a large impact on engineering and scientific
computing. Algorithmic advances increase the range of tractable problems and reduce
the cost of solving existing problems. Well-designed solver libraries provide a mechanism
for leveraging solver development across a broad set of applications and minimize the
cost of solver integration. Emphasis is required in both new algorithms and new software

(Heroux et.al., http://trilinos.sandia.qov/).




What is Trilinos?

Object-oriented software framework
for...

Solving big complex science &
engineering problems

More like LEGO™ bricks than
Matlab™

Trilinos provides the state-of-the-art preconditions and linear solver libraries
* demonstrate scalability on current HPC systems
* illustrate plans for continued maintenance
* include support for new hardware technologies



Target Platforms

Desktop: Development and more...

Capability machines:
Redstorm (XT3), Clusters
Roadrunner (Cell-based).

Multicore nodes.

Parallel software environments:
MPI
UPC, CAF, threads, vectors,...
Combinations of the above.

User “skins”:
C++/C, Python
Fortran.

Web, cca.

North Bridge/ FB-DiMMs
Memory Controller




r L=

L(u)=f
Math. model
-
Ly (up)=f,
Numerical model

U h = L h-lth
Algorithms

volving Trilinos Solution

Beyond a “solvers” framework

Natural expansion of capabilities to satisfy
application and research needs

Automatic diff.
Domain dec.
Mortar methods

Time domain
Space domain

Linear Petra
Nonlinear Utilities
Eigenvalues Interfaces
Optimization Load Balancing

= Discretization methods, AD, Mortar methods, ...



Trilinos Strategic Goals

~

Scalable Computations: As problem size and processor counts increase, the cost
of the computation will remain nearly fixed.

Hardened Computations: Never fail unless problem essentially intractable, in
which case we diagnose and inform the user why the problem fails and
provide a reliable measure of error.

Full Vertical Coverage: Provide leading edge enabling technologies through the
entire technical application software stack: from problem construction,
solution, analysis to optimization. D

Grand Universal Interoperability: All Trilinos packages will be interoperable, so
that any combination of packages that

makes sense algorithmically will be possible within Trilinos and with
compatible external software.

Algorithmic
>Goals

Software

Universal Accessibility: All Trilinos capabilities will be available to users of major
computing environments: C++, Fortran, Python and the Web, and from the
desktop to the latest scalable systems.

Universal Capabilities RAS: Trilinos will be:

The leading edge hardened, efficient, scalable solution for each of these applications
(Reliability).

Integrated into every major application at Sandia (Availability).

> Goals

Easy to maintain and upgrade within the application environment (Serviceability). /
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Obijective

MFiX
FORTRAN

Cross Language

Trilinos
C++

Integration of CFD code
with faster solvers and
algebraic preconditoners

Advantages

*Exploit legacy codes’ expertise in
setting up large scale problems
*Use Trilinos as a faster and modern
solver platform integrated with
legacy codes.

Challenges

*FORTRAN has no objected oriented
framework.

*Trilinos has been developed in
C++(objected oriented) framework.
*No semantic support for C++ in
FORTRAN.




Decompose the domain based on
NODESI, NODESJ and NODESK

4

Initialization of computations

equations for the fluid phase ) 1 SOR

Apply BC and solve the system of )

equations for fluid flow variables | BiCGSTAB
, 1 \

Compute various terms/fluxes in GMRES
L equations for solids phase

Apply BC and solve the system of “_ BICGSTAB +

equations for soliﬁphase variables [ Trilinos ] GMRES
[ Output ] > cG

6 BiCGSTAB/GMRES/

CG/Direct/....

( Compute various terms/fluxes in ) LEQ M Descnpt'on

Point Successive Over
Relaxation

Bi-Conjugate Gradient
STABilized method

Generalized Minimal
RESidual algorithm

Conjugate Gradient
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Cross Language Integration
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A language independent interface

to integrate legacy codes

Transfer A& b
Define solver
attributes

Interpret matrix
structure,
Implement CRS
scheme

Fortran

Semantic for
memory
references

_

--—-*

rapper

Transfer x

C wrapper

Communicator,
Interpret
Polymorphism
representations

lj

Cpp wrapper

Create
Epetra_MAP,
FilA&Db

¢

f Solution of Ax=b

Jailinos

ilinos



0
do k = ks
do i
d

enddo
enddo

tart, kend

= nstart,nend

o j = jstart, jend
IJK = funijk(i,j, k)

IJK GL = funijk gl (i,j, k)

ie = ie + 1

Anew (ie, 1)
Anew (ie, 2)

A M(IJK,-3)
A M(IJK,-1)

(

(
Anew (ie, 3) A M(IJK, -2)
Anew (ie, 4) A M(IJK,O0)
Anew (ie, 5) A_M(IJK,Z)
Anew (ie, 6) A_M(IJK,l)
Anew (ie, 7) A_M(IJK,3)
Bn(ie) = B M(IJK)
locgl (ie) IJK GL
pos (ie, 1) KM _OF (IJK)
pos (ie, 2) IM OF (IJK)
pos (ie, 3) JM_OF (IJK)
pos (ie, 4) JP_OF (IJK)
pos (ie, 5) IP OF (IJK)
pos(ie,6) = KP _OF(IJK)

enddo

IJK
IJK
IJK
IJK
IJK
IJK

Talinos



Tpetra_Map map(numGlobalElements, numMyElements, iIndexBase, comm)

Tpetra_crsMatrix A(map,7);

Tpetra_multivector x (map,1);
Tpetra_multivector b (map,1);

for (LO 1 = 0;1 < static_cast<LO> (numMyElements); ++i1) {
Values = Anew[][]1;
Indices = pos[]]1]:;
A->1nsertGlobalValues (gblRow, NumEntries, Values, Indices);

¥
A->FillComplete (map,map);

for (LO 1= 0; 1 < static_cast<LO> (numMyElements); ++1) {
const GO gblRow = map->getGlobalElement (i);
b->sumIntoGlobalVvalue(gblRow, O, Bn[i]);

}

Tpetra_LinearProblem problem(&A, &x, &b);

Problem->setRightPrec (plistp);

belos_bicgstab_manager_type solver(Problem, plists));

solver->solve();




for precondltloned iterative solver in Belos

Cpp wrapper
( Construct comm j
] ~
Construct
[ Constructmap | Construct Construct
solver manager plists of plistp of
- for desired of Solver preconditioner
(Construct objects for W iterative ootions options
A,xandb . method | P
\
]
( FilupAandb ) Set
[ Preconditioner
( Construct problem Set Solver W options
options
]

( Set problem j

\[ catsowe) |

tosolve Ax=Db

J

[ Update x in MFiX ] (]f’,z" [i 7] O\S




An abstract numerical algorithm (ANA) is a numerical algorithm that can be expressed solely in
terms of vectors, vector spaces, and linear operators

Example Linear ANA (LANA) : Linear Conjugate Gradients

Given:
Ae X — X : s.p.d. linear operator * ANAs can be very mathematically sophisticated!
be X : right hand side vector * ANAs can be extremely reusable!
Find vector x € X that solves Az = b
Linear Conjugate Gradient Algorithm Types of operations  Types of objects
Compute 7(9 = p | Az(0) for the initial guess z(0). linear operator Linear Operators
for:=1,2,... applications o A

Pi—1 = <r(i_1),r(i_1)>
Bi—1=pi—1/pi—2

(4) (i—1) vector-vector Vectors
p(’ﬂ) Azl (7) Operations e, T, P, q
q jo,

Scalars

scalar operations

e p B, v «

() = p(-1) _ scalar product

check Convergence, continue if necessary <x,y> defined by
end vector space

o 24

Vector spaces?
o X




Cartesian vessel: 10cm length and 100cm height

Sand particle diameter = 0.04cm

Sand particle density =2.0 g/cm?
Restitution co-efficient =0.80

Angle of internal friction =30

The minimum void fraction = 0.42

Fluid viscosity =0.00018 g/cm s
Fluid density =0.0012 g/cm3

Boundary conditions

Inlet: constant mass inflow

124.6 cm/s for 4.3<x<5.7; 25.9cm/s for 0<x<4.3, 5.7<x<10
Sidewalls: slip condition

Outlet : pressure outflow condition (p = 0)

Mesh
Structured: IMAX =10, JMAX= 100
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Cartesian vessel: 10cm length, 10cm width and 100cm height.

Sand particle diameter = 0.04cm

Sand particle density = 2.0 g/cm3
Restitution co-efficient =0.80

Angle of internal friction =30

The minimum void fraction =0.42

Fluid (gas) viscosity =0.00018 g/cm s
Fluid density =0.0012 g/cm3
Boundary conditions

Inlet: constant mass inflow (124.6 cm/s for 4.3<x<5.7, 4.3<z<5.7)
Sidewalls: slip condition

QOutlet : pressure outflow condition (p = 0)
Mesh

Structured: IMAX = 10, JMAX= 100, KMAX =10
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Cylindrical vessel: 10cm diameter 100cm height.

Sand particle diameter = 0.04cm

Sand particle density = 2.0 g/cm3
Restitution co-efficient =0.80

Angle of internal friction =0

The minimum void fraction =0.42

Fluid (gas) viscosity =0.00018 g/cm s
Fluid density =0.0012 g/cm3
Boundary conditions

Inlet: constant mass inflow (124.6 cm/s for 0<r<0.7)
Sidewalls: slip condition

Outlet: pressure outflow condition (p = 0)
Mesh

Structured: IMAX = 10, JMAX= 100, KMAX =10



l 025
0.00

MFiX MFiX-Trilinos



used for the performance analysis stud

Stampede (AS) Comet (AC) Bridges (AB)

Cores per socket 8 12 14

L1 cache (KB) 32 32 32

L3 cache (KB) 20480 30720 35840
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speedup
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Remarks:

Trilinos linear solver was integrated with MFiX

Scalability and speed-up tests for 2D & 3D bubbling flow problems were
performed for upto 1024 processors

>50% speed is observed but further investigation is required to examine any
biases of the solver parameters
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