Creating Materials and Energy Solutions

Creating Materials & Energy Solutions U.S. DEPARTMENT OF ENERGY

IOWA STATE UNIVERSITY

Science of Multicomponent Alloys – a Roadmap for Theoretical and Experimental Research

> Pratik Ray, Prashant Singh, Linlin Wang Matthew Kramer, Duane Johnson

This work is supported by the **DOE-FE (Cross-cutting Research program)** through Ames Laboratory contract no. DE-AC02-07CH11358

Alloy Design for Elevated Temperatures

1100 MC-NG O TMS-162 femperature for 1000 h creep life at 137 MPa (°C) O CMSY.10 1000 900 O Wrought Conventionally cast Ni based alloys 800 △ Directionally solidified approaching limits Single crystal 1940 1950 1960 1970 1990 2000 2010 1980 Year

Higher temperatures \rightarrow Higher energy efficiencies

Challenges –

- High T oxidation
- Moisture
- Creep and high T deformation
- Toughness & manufacturability

Alloy architecture -

- Tough, solid solution matrix
- Strengthening Mechanisms
- Phase stability
- High Temperature Oxidation Resistance

High Entropy Alloys (HEAs) are rapidly emerging as candidate materials

LABORATORY

Problem Definition and Approach

Grand Challenge: to speed the discovery and optimization of these chemically complex alloys and leverage our theoretical and experimental capabilities for assessing their long-term stability

Challenges in Disordered Systems

- Experimental Measurement: quenched or annealed samples.
- Band calculations: not always related to experimentally assessed (thermal and off-stoichiometric effects).

Modeling Disordered Solids: Thermodynamics

Velicky et. al., Phys Rev 165 (1968) 747

Direct calculation of energetics for Disordered/Partially-Ordered/ Ordered States

• DFT-based multi-sublattice KKR-CPA (configurational averaging)

Idea of CPA

(<u>C</u>oherent <u>P</u>otential

Approximation)

Thermodynamic Linear-Response calculations

- KKR-CPA based chemical or magnetic susceptibilities
- Directly calculate the energy associated with ASRO

Concentrated Solid Solution Alloys

Near equiatomic **High Entropy Alloys** (N>4) are **entropically & enthalpically competing** stabilized solid solutions with potential for high strength and oxidation resistance.

A1 HEA structural

HEA relative global stability

Global Stability & SRO in HEA: Singh, Smirnov, Johnson, Phys. Rev. B 91, 224204 (2015) Mechanical Properties in HEA: Sharma et al., Scientific Reports 6, 31028 (2016)

Opportunities and Challenges

Opportunities

Challenges

Manipulating SRO and MRO

 Promote clustering for enhanced strength or toughness ¹⁰ Al., CrCoFeNI

• Enhanced diffusion of passivating elements

Requires accurate models

• Typical DFT approach is expensive and introduces of artificial order

- Need for capturing long spatial and length scales with these computations
- Need to capture system dynamics as a function of Temperature.

Model Systems

ing Materials & Energy Solutie U.S. DERORTMENT OF IN

Phase selection in ZrHfNb alloys

Critical Questions

۲

Phase Stability

- How does the local ordering influence the phase transformation and its kinetics?
- Do we observe similar effects with Al?

Oxidation

 Manipulate the local ordering kinetics by altering the chemistry to yield a microstructure with improved oxidation resistance.

Model systems

S. DEROSTMENT OF B

SRO in High Entropy Alloys: TiZrHfAl_{x=0.25}

Mechanical Properties in HEA: Sharma et al., Scientific Reports 6, 31028 (2016)

Incipient ordering in TiZrHfAl alloys

U.S. DERORTHMENT OF INC

Incipient ordering in TiZrHfAl alloys

Alloy Phase Stability for SRO/LRO: TiZrHfAl_x

- Phase competition occurs between disordered and partially ordered structures.
- Small energy difference in these structures:

 $E_{PO} - E_{DO} = -7 \text{ mRy/atom}$

Electronic density of states favor the partially ordered structure, relative to the disordered structure.

Structure of TiZrHfAl alloys

Experiments TiZrHf hcp ss Al destabilizes hcp γ-brasses (bcc w/ vacancies)

Simulations predicted TiZrHf hcp ss Al destabilizes hcp To bcc

Model Systems

Singh, Smirnov, and Johnson, Phys. Rev.B 91, 224204 (2015)

Effect of Temperature on Oxidation of FeNiCoCrAl

Phase	k _p (g²/cm ⁴ .s)	E _A (kJ/mol)
α -Al ₂ O ₃	3.5 x 10 ⁻¹³	231
θ -Al ₂ O ₃	6.3 x 10 ⁻¹³	382

 θ -Al₂O₃ forms at lower temperatures, whereas, the external scale consists of α -Al₂O₃ at higher temperatures (>1000°C)

Evolution of the Oxide Scale in FeNiCoCrAl

1 hour @ 1000°C

The initial oxide is rich in Cr content, and becomes Al rich with time.

100 hours @ 1000°C

Creating Materials and Energy Solutions

2600

Effect of Al:Cr ratio on Oxidation of FeNiCoCrAl

- Given the relatively low stability of chromia, increased Al content helps with oxidation.
- But the initial formation of Cr₂O₃ promotes the growth of Al₂O₃, hence extremely low Cr content may not be desirable either

Improving Oxidation Resistance

Oxide scale Subscale (FeCr) rich – *governs Al diffusion/interlayer oxides*

Base Alloy – (FeCr) rich + (AlNi) rich (Both phases have similar Co content)

- How does Cr content affect the subscale thickness and composition?
- Can the distribution of (FeCr) rich phase be modified, via different processing routes, in order to tune the "accessibility" of Al to the external scale by modifying the subscale thicknesses?

The Kinetic Challenges

Kinetic Challenges

Kinetics of Oxidation

- How can we predict the oxidation kinetics as a function of T and comp?
- Can we design microstructures to optimize oxidation resistance?

Kinetics of Phase Transformations

- How do we rapidly assess the effect of time and Temperature on Phase Transformations and control the microstructures?
- Can the calculated T_{sp} in conjunction with activation energies predict the transition temperatures more accurately?

Proposed Work

- Work on the ZrHfNb and TiZrHfAl alloys indicate significant kinetic effects during phase transformations – including the possibility of kinetic stabilization of phases below a certain blocking Temperature ?
- Can these concepts be leveraged for modifying the microstructures of High Entropy Alloys, and eventually affect the oxidation resistance ?

Focus Areas for FY 2017-2018: In-situ diffraction studies for rapid assessment of TTT diagrams for quinary AI and Cr containing alloys, and subsequently designing phase/microstructure assemblage by adjusting processing conditions for optimal oxidation resistance.

2017

General Summary

- Extension of the KKR-CPA approach to general lattices, i.e. *n* components, *n* sub-lattices.
- Combined KKR-CPA, ASRO and planar defect energies (with Suzuki effect) will guide the design of improved alloys, e.g., High-Entropy Alloys.
- Used *In-situ* synchrotron diffraction to determine the T range of stability
- Determined evolution of the oxide scale at elevated temperatures
- A combination of the theoretical tools and experimental work on kinetics of transformations and oxidation will guide the microstructural design of novel HEAs.

This work is supported by the **DOE-FE (Cross-cutting Research program)** through Ames Laboratory contract no. DE-AC02-07CH11358

We would like to acknowledge –

- Srinivasa Thimmaiah, single crystal diffraction
- Jim Anderegg, X-ray Photoelectron Spectroscopy
- Bryce Thoeny, Metallographic Sample Preparation

