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Institute for the Design of Advanced Energy Systems
• Vison: 

– Become the premier resource for the identification, synthesis, optimization and analysis of 
innovative advanced energy systems at scales ranging from process to system to market.

• Challenges: 
– Determining which technologies to pursue and how to optimally integrate them while taking into 

account their full life cycle environmental footprint and determining their potential in the market. 
– Current computational tools and analysis approaches cannot simultaneously address such complex 

interactions, nor can they address a sufficient number of scenarios in the timeframes required. 
• Integrates NETL’s historic capabilities in Systems Engineering & Analysis

– Energy processes
– Life cycle environmental impacts
– Energy infrastructure
– Energy markets

• Impact: 
– Rapid integrated identification and assessment of novel energy technologies and their potential 

impact within complex systems and markets in order to prioritize and direct R&D efforts.
– Actively assist development and scale-up of advanced energy systems
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• Approach: Develop and utilize multi-scale, simulation-
based computational tools and models to support design, 
analysis, optimization, scale-up and troubleshooting.

• Next generation modeling and optimization platform
– Flexible and open modeling environment
– Complete provenance information
– Supports advanced solvers and computer architecture
– Intrusive uncertainty quantification
– Process synthesis, integration, and intensification
– Process control and dynamics

• Apply to development of new & novel energy systems

– Chemical Looping

– Advanced Combustion Concepts

– Transformational Carbon Capture

Development Of Innovative Advanced Energy Systems 
Through Advanced Process Systems Engineering
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• Demonstrate next generation capabilities for synthesizing optimized energy systems 
– Actively assist development and scale-up: Chemical looping, oxycombustion, and other advanced energy systems

– Flexible design approaches: Optimization over broad ranges of potential plant operation (feeds, loads, etc)

– Semi-intrusive UQ: Unprecedented understanding of technical and market risks

– Process intensification: Step-change technologies that are smaller, more modular and more cost effective

– Advanced computing: New algorithms to enable multicore, many core (GPU) and distributed computing for large scale 
optimization codes, particularly NLP and MINLP solvers

• Demonstrate a fully integrated framework for advanced process systems engineering

• Demonstrate a fully integrated advanced multi-scale simulation toolset 
– Unified architecture to support the complete life cycle from concept to design, start-up and operation.

IDAES Project Goals
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 Modeling environment
 Data management system

 Process intensification
 Distributed computing

 Semi-intrusive UQ
 Global optimization



• Based on Pyomo http://www.pyomo.org/
– Python-based general mathematical modeling language
– From Sandia National Laboratory
– Developers are integral to IDAES
– Open-source
– Interface to advanced optimization solvers
– Automatic discretization of PDEs
– New: DAE solver interface for dynamic modeling

• Process modeling software environment
– Standards for process/property models
– Inter-connectable flowsheet, unit and sub-models
– Expedite development of process models
– Load/save model states
– Initialization

IDAES Modeling Framework
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1. Project Management 

2. Conceptual Design, Optimization, UQ, and Intensification of 
Advanced Energy Systems (NETL, CMU, WVU)

3. Software Architecture, Algorithms, and Distributed Computing 
(Sandia, LBL, CMU)

4. PSE Support for Advanced Combustion Systems (NETL)
– Modeling to directly support internal and external ACS projects, including chemical looping

– Working with program to explore collaboration with B&W, WUST, GTI
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Example IDAES Workflows

7

Rigorous Kinetic and 
Thermodynamic Models

Rigorous Unit Operation 
Models

Advanced Process Systems 
Optimization of Fixed 

Flowsheets

High Fidelity Models

Conceptual Design to Find 
Optimal Process Configuration

Equation Oriented 
Process 

Optimization

Algebraic Surrogate Models
e.g., ALAMO

Smart Model 
Reduction 
Strategies

Optimized 
Process 

Configuration

Optimized 
Process 

Conditions

Results

Cozad, Sahinidis, Miller, 2014, AIChE J.



Example IDAES Workflows
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• Bubbling Fluidized Bed (BFB) for solid-sorbent 
based CO2 capture system

• 1-D, 3 region, non-isothermal, 6 components
• 14,187 Algebraic Equations (1994 PDEs)

• Surrogate model containing  8 “optimization 
friendly” algebraic equations

• Outlet T, P, composition as a function of input 
conditions, equipment geometry

Lee and Miller, 2013, Ind. Eng. Chem. Res.



Advanced Oxycombustion Systems Optimization
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Traditional Coal-Fired Power Plant

Steam Cycle

Boiler

Electricity

Air

N2, H2O, CO2

Fuel

10



Oxycombustion Power Plant
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Advanced Oxycombustion Systems Optimization

Min  Levelized Energy Cost
s.t. Steam cycle connectivity

Steam thermodynamics
Heat exchanger models
Pump model
Turbine model
Heat integration model
ASU and CPU Models
Hybrid boiler model

Dowling, A. W., J. P. Eason, J. Ma, D. C. Miller and L. T. Biegler (2016). Equation-Based Design, Integration, and Optimization of Oxycombustion Power 
Systems. Alternative Energy Sources and Technologies: Process Design and Operation. M. Martín. Cham, Springer International Publishing: 119-158.
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Integrating Detailed Boiler Model

CFD model: 2-3 weeks to solve

Hybrid 1-D (char kinetics, flow)
3-D (radiative heat transfer):

2-3 minutes to solve

“Still expensive”

Ma, J.; Eason, J. P.; Dowling, A. W.; Biegler, L. T.; Miller, D. C., Development of a First-Principles Hybrid Boiler Model for 
Oxy-Combustion Power Generation System. International Journal of Green House Gas Control, 2016, 46, 136-157
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• Applied for Hybrid Boiler Model

• General idea: Adaptively generate and 
applies simplified surrogate models 
throughout the optimization in local 
domain spaces where it can be trusted.

• Able to prove that the optimal solution to 
the trust-region problem = optimal 
solution to original problem

Trust Region Methodology
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Eason, J. P. and Biegler, L. T. A trust region filter method for glass box/black box optimization. AIChE J., 2016, 62, 3124–3136. 

1-D/3-D hybrid boiler model

Generate simplified surrogate model
e.g. Tout = 3x2 + 5x +  1

Can we trust 
surrogate model?

No

Yes

Is trust region zero?

No

Shrink 
trust 
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Use surrogate model
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Yes
Optimal 
Solution



Oxycombustion Optimization Results
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5.9% penalty for oxy-fired configuration

Air-fired

Flue gas temperature (K) 1600

Steam exit temperature (K) 835

Steam exit pressure (bar) 223

Fuel rate, HHV (MW) 1325.5

ASU + CPU Power (MW) N/A

Net Power (MWe) 515.5

Efficiency 38.9%

Oxy-fired

1600

835

223

1325.5

114.3

437.4

33.0%



Conceptual Design of Chemical Looping Systems
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Conceptual Design of Chemical Looping Systems
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Discrete decisions:
• Type, orientation, and number of reactors
• Presence/absence of water-gas shift reactor
• Which products (Power, H2, Syngas, Heat, CO2)
• Choice of oxygen carrier

Continuous decisions:
• Operating conditions (temperatures, pressures, flow rates)
• Unit geometries
• Relative amounts of each product
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Equilibrium-based Framework for Reactor System
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Next Steps: 
• Refine reactor models to include kinetics and hydrodynamics
• Build out chemical looping flowsheet
• Use IDAES Conceptual Design algorithms to optimally chose 

unit operations and integrate them into complete power system
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2. Conceptual Design, Optimization, UQ, and Intensification of Advanced Energy Systems
– Initial oxycombustion systems model in Pyomo and compared model predictions with published results
– Initial chemical looping systems model in Pyomo and compare model predictions with published results
– Initial optimization framework to determine size and shape of active metal sites in oxygen carriers

• Partnership with NETL’s materials development team providing atomistic simulations and experimental results
– Modeling standards that can be re-used, linked together, and linked with properties models
– Framework to automatically generate equation of state property models from PVT data
– Comprehensive steady state and dynamic BFB models for system optimization
– Validated a fully rate-based solvent system model in Pyomo with the CCSI Gold Standard MEA model

3. Software Architecture, Algorithms, and Distributed Computing 
– Enabled support of units within Pyomo
– Parallel algorithms on the GPU for dense matrices, and demonstrate them on least squares and 

parameter estimation problems
– Determined the potential to enable Pyomo to effectively utilize advanced computing architectures: NERSC

General
– IDAES was identified as the foundation for an NETL Strategic Initiative
– 10 journal articles and 1 book chapter have been published
– 13 technical presentations were given at national/international scientific conferences 

2016 Major Accomplishments

19



• Highly supportive of IDAES
– Converging on one software tool will solve a multitude of problems
– Will enable them to becoming more agile in incorporating new capabilities (e.g., 

latest solvers, cutting-edge academic codes)
– Will enable extensive customization due to Equation-Oriented optimization approach
– Will enable quantitative understanding of uncertainty (and risk)
– Will produce broadly applicable tools that can impact many industries

• Early advice
– Emphasize usability!!!
– Build it step by step to gather early adopters

Highlights from Exploratory IDAES Stakeholder Meeting
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“I’m glad the government is funding this”

March 13, 2017
Carnegie Mellon University



• IDAES is a new computational platform that enables innovation and large, 
multi-scale system optimization.

• IDAES addresses a number of the challenges associated with the design and 
scale-up of advanced energy systems.

• The IDAES team is ramping up interactions with technology developers and 
stakeholders to apply the tools.

Summary

21



2. Conceptual Design, Optimization, UQ, and Intensification of Advanced Energy Systems
2.1. Advanced Optimization Strategies for Bubbling Fluidized Bed Processes in Pyomo (2016)

Larry Biegler, Mingzhao Yu, David Molina Thierry
2.2 Advanced Oxycombustion Systems Optimization

Larry Biegler, John Eason, Jinliang Ma, Tony Burgard, Dehao Zhu
2.3 Chemical Looping Systems Optimization 

Andrew Lee, Larry Biegler, Mingzhao Yu, David Molina Thierry, Chinedu Okoli
2.4 Molecular design of oxygen carriers for chemical looping 

Chrysanthos Gounaris, Chris Hanselman
2.5 Tools for Kinetics and Thermophysical Properties 

Nick Sahinidis, Zach Wilson, Marissa Engle, John Eslick
2.6 Advanced Solvent System Optimization 

John Eslick, Debangsu Bhattacharyya, Paul Akula
2.7 Conceptual Design Tools 

Ignacio Grossmann, Qi Chen, John Siirola, Tony Burgard, Jaffer Ghouse
2.8 Optimal Planning of Electric Power Infrastructures

Ignacio Grossmann, Cristiana Lara, Ben Omell, Joel Theis, Omar Guerra
3. Software Architecture, Algorithms, and Distributed Computing 

3.1 System Architecture 
John Siirola, Dan Gunter

3.2 Optimization Algorithms and Parallel Computing 
Nick Sahinidis, Benjamin Sauk, Dan Gunter, John Siirola

3.3 Data Management and Workflow 
Deb Agarwal, You-Wei Cheah
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IDAES-related Publications
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IDAES-related Conference Presentations
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This presentation was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government or any agency thereof. The views and 
opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof.
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