Towards Predicting Reactive-element Tolerances in the Compositional Design of Al$_2$O$_3$-scale Forming Alloys and Coatings

Austin Ross, Bi-Cheng Zhou, Xuan L. Liu, Greta Lindwall, Shun-Li Shang, Zi-Kui Liu
Department of Materials Science and Engineering
The Pennsylvania State University, University Park, PA 16802

Thomas Gheno, Brian M. Gleeson
Department of Mechanical Engineering and Materials Science
University of Pittsburgh, Pittsburgh, PA 15261

dr.liu@psu.edu
Key Questions

• Understand the controlling factors that affect the formation of Al$_2$O$_3$ scale vs internal oxidations

• Determine the effects of alloying elements on retardation of Al$_2$O$_3$ scale growth

• Explore new compositional design of Al$_2$O$_3$-scale forming alloys and coatings
• Thermally grown oxide (TGO)
 • Typically α-Al_2O_3 for very high temperature applications (T > 1000 °C).
 • Established using **bulk alloys** and **metallic coatings**.

Alumina Scale Formation on Ni-Al Alloys

Oxidation carried out in 0.1 atm pure O₂

Gleeson, University of Pittsburgh
Critical Al Concentration in γ–Ni$_{1-x}$Al$_x$

$N_{Al}^{*(0)}$ Using Zhao’s Model
$N_{Al}^{**(0)}$ Using Wagner’s Model

$N_{B}^{*(0)} = \sqrt{\pi N_{O}^{(s)} D_{O}} \cdot \frac{\pi}{\nu D_{B}} \beta$

$\beta = \left(\frac{1}{\left(\frac{V_{BO}^{*}}{g_{BO} V_{alloy}} - \frac{V_{BO}^{*}}{V_{alloy}^{*}} + 1 \right)^2 + g_{BO}^{*}} \right)$

Oxides Block Diffusion

Model for oxide blocking comes close to transition data

Benefits of Reactive Elements (RE) on Alumina Scale Formation on Alloys

Al₂O₃ scale growth is dominated by grain-boundary diffusion at the temperatures of interest

\[
\begin{align*}
\text{Al}_b^{3+} & \xrightarrow{\text{Al}_l^{3+}} \text{Al}_b^{3+} \\
\text{O}_l^{2-} & \xrightarrow{\text{O}_b^{2-}} \text{O}_l^{2-}
\end{align*}
\]

Oxygen

Al₂O₃ Scale

Alloy

\[k_p\] Outward transport

Fe, Ni-based with RE vs. Without

- Down 2x
- RE reduces \(D_b^{Al}\) by 4x

RE = Hf, Y, Zr, La, ...

Oxidation of Ni-20Al-20Pt-xHf at 1150°C

- Reactive elements offer added oxidation resistance.
- High concentrations results in over-doping.

Gleeson, University of Pittsburgh
Cross-sectional Images After 100 h Oxidation at 1150°C

- This over-doping concentration is usually found by trial and error and depends on alloys.
- Can it be determined by the thermodynamic criteria for this event?

Gleeson, University of Pittsburgh
Computational Thermodynamics and Materials Design

\[dU = TdS - PdV + \sum \mu_i dN_i = \sum Y^a dX^a \]

- Equilibrium thermodynamics

\[dU = \sum Y^a dX^a - D_{ip} d\xi + 0.5D_2 (d\xi)^2 \]

- Irreversible/non-equilibrium thermodynamics

\[S = -k_B \sum p_i \ln p_i \]

- Statistical: Entropy for probability of configurations/states by Boltzmann/Plank/Gibbs.
CALPHAD modeling: Individual phases

Thermochemical data: enthalpy, entropy, heat capacity, activity

Phase equilibrium data: phase boundary, phase stability

Gibbs Energy of Individual Phases

Applications

Pure elements → Binary → Ternary → Multicomponent

Thermochemical and phase equilibrium data are not independent!

First-Principles Calculations and CALPHAD Modeling of Thermodynamics

Zi-Kui Liu

Predictability
First-principles
Modeling
Experiments
Statistical Mechanics

Liu, J. Phase Equilib. Diffus., 30 (2009), 517
Properties of Individual Phases and Interfaces: Dependence on T, P, xi

- Electronic structures
- Thermal Properties
 - Heat capacity
 - Enthalpy, entropy, free energy
 - Thermal expansion/contraction
- Transport Properties
 - Diffusion coefficient
 - Seebeck coefficients
 - Heat of transport
- Interfacial properties
 - Stacking fault energy
 - Anti-phase boundary energy
 - Grain boundary and interfacial energy
- Mechanical properties
 - Elastic moduli/Compressibility
 - Dislocations mobility
 - Relative creep rate
- Kinetic Properties
 - Interface mobility
- Physical properties
 - Melting and Glass transition
 - Electrical properties
 - Magnetic properties
 - Optical properties
- Mechanical properties
 - Fracture toughness
 - Plasticity of single crystal
 - Ductility and formability
 - Hardness
 - Yield strength
 - Fatigue strength

Liu, J. Phase Equilib. Diffus., 30 (2009), 517
Ni-Al-Cr-Hf-O

Modeled in the Literature

Modeled by PSU

X=Al,Cr,Hf
HfO$_2$ Stability in an Al$_2$O$_3$ Forming Alloy

\[\text{Gheno, Zhou, Ross, et al. (2017). Oxidation of Metals.} \]
Hf Activity Changes with Hf Concentration, Al Concentration and Phases Present

In single phase

\[\frac{\partial \mu_{Hf}}{\partial N_{Al}} > 0 \]

In two-phase region: average of two phases

Ni-xAl-5Cr-yHf

T=1150 °C
Defining Hf tolerance

\[T = 1150 \, ^\circ \text{C} \]

\[\frac{\text{ACR(O}_2\text{,GAS)}}{\text{Al}} = 6.7 \cdot 10^{-8} \]

\[x_{\text{Hf}}^\text{max} = 0.24 \, \text{at\%} \]
HfTolerance: Engineering in Composition Space

T=1150 °C
Ni-xAl-5Cr-yHf

HfO₂ stable

γ
γ' + γ'
β + γ'

Only Al₂O₃

Hf content for HfO₂ formation, at.%

Al concentration, at.%
Reactive Element Doping: Ni-20Al-5Cr-0.1Hf (at\%)

- Air, 1150 °C

\[\Delta m / A \text{ (mg/cm}^2\text{)} \]

- Time (h)

\[\text{Ni-20Al-5Cr} \]

- Only Al\(_2\)O\(_3\) is stable

- Hf content for HfO\(_2\) formation, at.\%

- Al concentration, at.\%

Gleeson, University of Pittsburgh
Experimental Results

Two Major Factors Affecting Hf Tolerance In The Design of High Temperature Alloys

• **γ’ phase stability:** In Ni-Al-X systems, elements can be added which increase the γ’ phase fraction when substituting Ni or Al.

• **Hf-X chemical interaction:** In the Al-Hf-Ni-X systems, elements can be added which decrease the Hf activity in γ and γ’.
 • Effect of X on activity of Hf can be found by determining the enthalpy of mixing between Hf and X.
Alloying Effects on γ' Phase Stability in Ni-Al-X

Mole fraction, X

Mole fraction, Al

T=1000°C

Elements: Cr, Co, Cu, Fe, Ga, Hf, Mn, Pt, Re, Si, Ti, W

Calculations Using Special Quasi-random Structures to Calculate Hf-X Mixing Enthalpy

![Diagram showing mixing enthalpies for various Hf-X pairs.]
Calculated Effect of Pt on Hf Activity

T = 1000 °C

Ni-xAl-5Cr-0.1Hf

Ni-xAl-5Cr-0.1Hf-1Pt
Calculated Effect of Si on Hf Activity

T = 1000 °C

Ni-xAl-5Cr-0.1Hf

Ni-xAl-5Cr-0.1Hf-1Si
Calculated Effect of Cr on Hf Activity

Ni-xAl-5Cr-0.1Hf

Ni-xAl-6Cr-0.1Hf

T=1150 °C
Cross-Sectional Images of Ni-20at.%Al-Pt-Hf γ/γ' Alloys After 500 Oxidation Cycles at 1150°C in Air
Hf Tolerance: Ni-20Al-5Pt-0.5Hf

![Graph showing Hf content for HfO2 formation vs Al concentration, with NiAl2O4, Al2O3, and HfO2 phases indicated.]

- Hf content for HfO2 formation, at.%
- Al concentration, at.%
Hf Tolerance: Ni-20Al-20Pt-0.5Hf

Provided by Dr. Brian Gleeson at the University of Pittsburg
Parameters:

\(f^\gamma = 0.57 \)

\(\chi_{Al} = 17 \text{ at}\% \)

\(\chi_{Cr} = 8 \text{ at}\% \)

Alloy:

Ni-17Al-8Cr
Engineering a RE-doped Alloy/Coating: Doping with Hf

Parameters:

\[
\begin{align*}
\chi_{Al} &= 17 \text{ at}\% \\
\chi_{Cr} &= 8 \text{ at}\%
\end{align*}
\]

Alloy:

Ni-17Al-8Cr-(<0.15)Hf

T = 1100 °C
Experimental Results for Hf Doped Alloy

Alloy: Ni-17Al-8Cr-(0.1)Hf

• The γ' phase in Ni-superalloys produces an appreciable decrease in Hf activity compared to the γ phase, resulting in a high solubility of Hf in γ'.
• The Hf tolerance, a thermodynamic criterion for Hf over-doping, was established in terms of the relative stabilities of HfO$_2$ and Al$_2$O$_3$ and , showing excellent agreement with observations in oxidation experiments.
• First-principles calculations were used to predict the effects of alloying elements on Hf tolerance, with favorable results demonstrated for an alloy.
• The developed approach has the potential for applications such as the effects of CO$_2$, steam, and other service conditions.
• Similar approaches may be developed for the Cr$_2$O$_3$ scale growth.