

Towards Predicting Reactive-element Tolerances in the Compositional Design of Al₂O₃-scale Forming Alloys and Coatings

Austin Ross, Bi-Cheng Zhou, Xuan L. Liu, Greta Lindwall, Shun-Li Shang, Zi-Kui Liu

Department of Materials Science and Engineering

The Pennsylvania State University, University Park, PA 16802

dr.liu@psu.edu

Thomas Gheno, Brian M. Gleeson

Department of Mechanical Engineering and Materials Science University of Pittsburgh, Pittsburgh, PA 15261

Key Questions

- Understand the controlling factors that affect the formation of Al_2O_3 scale vs internal oxidations
- Determine the effects of alloying elements on retardation of Al_2O_3 scale growth
- Explore new compositional design of Al₂O₃-scale forming alloys and coatings

Bond Coats in Turbines

- Thermally grown oxide (TGO)
 - Typically α -Al₂O₃ for very high temperature applications (T> 1000 °C).
 - Established using **bulk alloys** and **metallic coatings**.

F.S. Pettit, "Oxidation mechanisms for Ni-Al Alloys at temperatures between 900 and 1300°C," AIME Met. Soc. Trans., 239 (1967) 1296.

Critical AI Concentration in $\gamma - Ni_{1-x}AI_x$

Model for oxide blocking comes close to transition data

Ross, AJ. Master Thesis Dissertation. The Pennsylvania State University, 2015.

Benefits of Reactive Elements (RE) on Alumina Scale Formation on Alloys

Al₂O₃ scale growth is dominated by grainboundary diffusion at the temperatures of interest

	kρ	Outward transport
Fe, Ni-based with RE <i>vs.</i> Without	Down 2×	RE reduces D _b ^{Al} by 4×

RE = Hf, Y, Zr, La, ...

P.Y. Hou, "Impurity effects on alumina scale growth," J.Am. Ceram. Soc., 86 (2003) 660.

Oxidation of Ni-20Al-20Pt-xHf at 1150°C

- Reactive elements offer added oxidation resistance.
- High concentrations results in over-doping.

Gleeson, University of Pittsburgh

Cross-sectional Images After 100 h Oxidation at 1150°C

- This over-doping concentration is usually found by trial and error and depends on alloys
- Can it be determined by the thermodynamic criteria for this event?

Gleeson, University of Pittsburgh

Computational Thermodynamics and Materials Design

$$dU = TdS - PdV + \sum \mu_i dN_i = \sum Y^a dX^a$$

• Equilibrium thermodynamics

$$dU = \sum Y^a dX^a - D_{ip} d\xi + 0.5 D_2 (d\xi)^2$$

• Irreversible/non-equilibrium thermodynamics

$$S = -k_B \sum p_i ln p_i$$

 Statistical: Entropy for probability of configurations/states by Boltzmann/Plank/Gibbs.

CALPHAD modeling: Individual phases

Pure elements \rightarrow Binary \rightarrow Ternary \rightarrow Multicomponent

Thermochemical and phase equilibrium data are not independent!

Kaufman & Bernstein: Computer Calculation of Phase Diagram. 1970

JPEDAV (2009) 30:517–534 DOI: 10.1007/s11669-009-9570-6 1547-7037 ©ASM International **Basic and Applied Research: Section I**

Liu, J. Phase Equilib. Diffus., 30 (2009), 517

PennState Properties of Individual Phases and Interfaces: Dependence on T, P, xi

- Electronic structures
- Thermal Properties
 - Heat capacity
 - Enthalpy, entropy, free energy
 - Thermal expansion/contraction
- Transport Properties
 - Diffusion coefficient
 - Seebeck coefficients
 - Heat of transport
- Interfacial properties
 - Stacking fault energy
 - Anti-phase boundary energy
 - Grain boundary and interfacial energy
- Mechanical properties
 - Elastic moduli/Compressibility
 - Dislocations mobility
 - Relative creep rate

- Kinetic Properties
 - Interface mobility
- Physical properties
 - Melting and Glass transition
 - Electrical properties
 - Magnetic properties
 - Optical properties
- Mechanical properties
 - Fracture toughness
 - Plasticity of single crystal
 - Ductility and formability
 - Hardness
 - Yield strength
 - Fatigue strength

Liu, J. Phase Equilib. Diffus., 30 (2009), 517

Ni-Al-Cr-Hf-O

Modeled in the Literature

Modeled by PSU

HfO₂ Stability in an Al₂O₃ Forming Alloy

Hf Activity Changes with Hf Concentration, AI Concentration and Phases Present

Defining Hf tolerance

Hf Tolerance: Engineering in Composition Space

Gleeson, University of Pittsburgh

Experimental Results

Gheno, Zhou, Ross, et al. (2017). Oxidation of Metals.

Two Major Factors Affecting Hf Tolerance In The Design of High Temperature Alloys

- γ ' phase stability: In Ni-Al-X systems, elements can be added which increase the γ ' phase fraction when substituting Ni or Al.
- **Hf-X chemical interaction**: In the AI-Hf-Ni-X systems, elements can be added which decrease the Hf activity in γ and γ '.
 - Effect of X on activity of Hf can be found by determining the enthalpy of mixing between Hf and X.

Calculations Using Special Quasi-random Structures to Calculate Hf-X Mixing Enthalpy

AISiCrMnFeCoNiCuZnGaGeMoTcRuRhPdAgCdInSnWReOsIrPtAuHgTIPb

Calculated Effect of Pt on Hf Activity

Calculated Effect of Si on Hf Activity

Calculated Effect of Cr on Hf Activity

Cross-Sectional Images of Ni-20at.%AI-Pt-Hf γ/γ' Alloys After 500 Oxidation Cycles at 1150°C in Air

Gleeson, University of Pittsburgh

Hf Tolerance: Ni-20Al-5Pt-0.5Hf

Hf Tolerance: Ni-20Al-20Pt-0.5Hf

Provided by Dr. Brian Gleeson at the University of Pittsburg

Experimental Results for Hf Doped Alloy

Gheno, Zhou, Ross, et al. (2017). Oxidation of Metals.

- The γ' phase in Ni-superalloys produces an appreciable decrease in Hf activity compared to the γ phase, resulting in a high solubility of Hf in γ' .
- The Hf tolerance, a thermodynamic criterion for Hf overdoping, was established in terms of the relative stabilities of HfO_2 and Al_2O_3 and , showing excellent agreement with observations in oxidation experiments.
- First-principles calculations were used to predict the effects of alloying elements on Hf tolerance, with favorable results demonstrated for an alloy.
- The developed approach has the potential for applications such as the effects of CO_2 , steam, and other service conditions.
- Similar approaches may be developed for the Cr_2O_3 scale growth.