

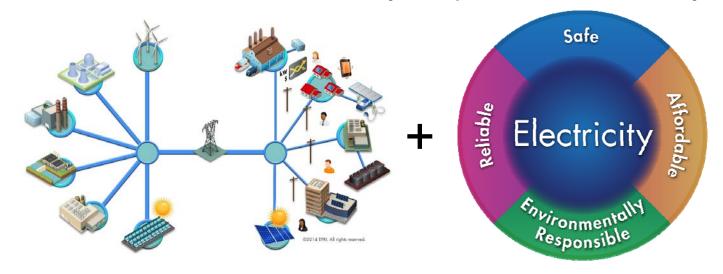
Technology Maturation in Power Generation

Tom Alley

Vice President – Generation Electric Power Research Institute

2017 Crosscutting Review MeetingMarch 21, 2017

EPRI's Mission


Advancing **safe**, **reliable**, **affordable**, and **environmentally responsible** electricity for society through global collaboration, thought leadership and science & technology innovation

Corporate Strategic Direction

Innovative solutions that enable the transformation of power systems to be more *flexible*, *resilient*, *and connected* to provide society with *safe*, *reliable*, *affordable*, *and environmentally responsible electricity*

Three Key Aspects of EPRI

Independent

Objective, scientifically based results address reliability, efficiency, affordability, health, safety, and the environment

Nonprofit

Chartered to serve the public benefit

Collaborative

Bring together scientists, engineers, academic researchers, and industry experts

Our Members...

- 450+ participants in more than 30 countries
- EPRI members generate approximately 90% of the electricity in the United States
- International funding nearly 25% of EPRI's research, development, and demonstrations

Conducting Research Today

Energy and Environment

- Environmental Sciences: Air and Multimedia
- Environmental Sciences: Groundwater and Land Management
- Environmental Sciences: Water and Ecosystems
- Strategic Analysis and Technology Assessments
- Workforce and the Public: Health Assessment and Safety

Generation

- Advanced Fossil Plants, Carbon Capture, Utilization, and Storage
- Combined Cycle
- Environmental Controls
- Major Component Reliability
- Materials and Chemistry
- Operations and Maintenance
- Power Plant Water Management
- Renewables

Nuclear

- AP Safety and Risk Technology
- AP Strategic Initiatives
- Fuel Reliability
- High Level Waste and Spent Fuel Management
- Materials Degradation
- NDE Characterization

Power Delivery and Utilization

Distribution Utilization

- Distribution
- Energy Utilization
- Information, Communication, and Cyber Security

Transmission

- Grid Operations and Planning
- Transmission and Substations

EPRI Thought Leadership History Process Scenarios Global Points of View

The Integrated Energy Network Builds upon Decades of EPRI Thought Leadership

PRISM: Portfolio for Clean Generation

Bounding Scenarios to the 2030s and Beyond

Global Economic Slowdown	No new environmental policies	
Localization of Energy Systems	 Focus on energy systems at local customer and community level Increased distributed generation adoption results in a decrease in grid demand Innovation at the intersection of third-party suppliers, technology developers, and electric utilities 	
Hydrocarbon Fuels Dominate	 Hydrocarbon fuel prices low; supply abundant Low electricity prices Increased electricity use and demand growth Innovation focused on efficient hydrocarbon extraction and using abundant fuels in a clean way 	
Significant Reduction in Environmental	 International actions to significantly reduce environmental emissions Expansive new economy-wide environmental policies Electrification of economy with clean electricity increases demand 	

Perspectives on how energy will be produced, transported, used, and regulated

Drivers and Critical Trends

HYDROCARBON FUEL PRICES	ENERGY AND ENVIRONMENTAL POLICY	DEMAND FOR GRID- SUPPLIED ELECTRICITY	INNOVATION AND CONSUMER BEHAVIOR
Fuel extraction	Public opinion and stakeholder/community pressure	Economic development	Technology research and development
Fuel transportation	Government policies – views, opinions, and commitments	Building codes & standards	Public and private funding
Fuel demand	Regulations	Energy consumption of electric devices and appliances	Technology companies outside of the electricity industry
Availability of resources	Scientific evidence and breakthroughs	Demand-side management	Consumer needs and desires
Regulations affecting fuel	Other	Consumer self-generation and storage	Other
Local versus global market		Consumer perception of grid- supplied electricity	
Fuel producer activity		Grid technologies	
Futures pricing		Other	
Other			

EPRI will regularly re-evaluate these drivers and critical trends

Selected "Global Points of View"

Using Cleaner Energy

- Efficiency emerges across the energy sector
- Electricity demand outpaces energy demand
- Efficient electrification accelerates
- Transportation becomes more efficient and cleaner

Producing Cleaner Energy

- Energy reduces environmental footprint
- Central-station generation serves an anchor role
- Renewable energy deploys rapidly

Integrating Energy Resources

- Connections across energy sources important
- Integrated electric grid is key enabler
- Higher expectations for power quality/reliability
- Security/resiliency challenges and opportunities

Imagine an energy future where all forms of energy can be optimally integrated to connect customers with safe, reliable, affordable and clean energy resources

Transition to Cleaner Electricity Generation ~2030

Renewables

Renewable Growth will be Global;

Pace and Scale of Nuclear, Coal and Natural Gas Growth will vary from Region to Region

Distributed Energy Resources

Natural Gas

Ultra Supercritical

Nuclear

Generation Sector Strategic Issues

Provide the fossil & renewables generating fleet with safe, reliable, economical, and environmentally responsible technologies

Intelligent Generation

CO₂ Reduction

Renewable Generation

Environmental Impacts

Asset Management

The Value of the Research Lifecycle

TRL 1: Exploratory

TRL 8-9: Commercial Deployment

TRL 2: Conceptual Design

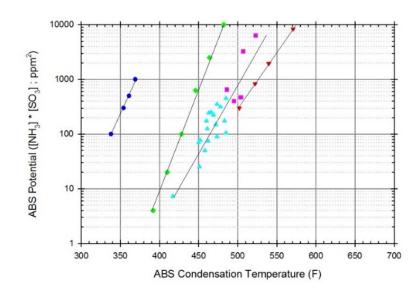
TRL 6-7: Field Demonstrations

TRL 3: Proof of Concept

TRL 4-5: Lab Testing **Paper Studies**

Lab Research

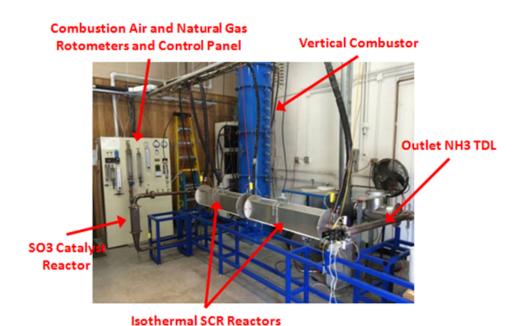
Plant Demonstrations


Guidelines

Implementation

Paper Studies

ABS Condensation Temperature as a Function of ABS Potential



- Technology Innovation (TI) Research with UC Irvine
- Determination of ABS formation temperature

Lab Research

- Lab scale study evaluating catalyst impacts from ABS formation
- Confirm ability to recover catalyst performance

2006

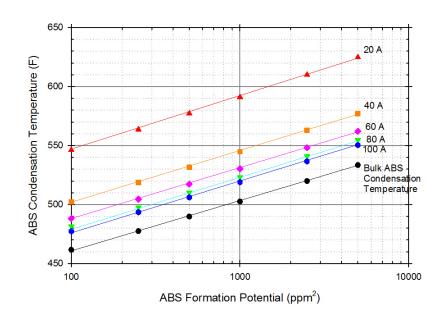
2012 - 2013

Plant Demonstrations

2014 Technology
Transfer Award
Winner

TVA performs first full scale demo at Cumberland (2.1% sulfur coal)

2006



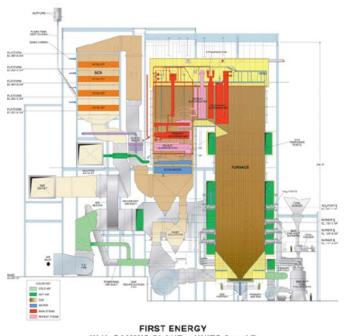
ABS Condensation Temperature as Function of Formation Potential and Catalyst Pore Diameter

Lab Research

Guidelines

- Assess ABS impacts on catalyst
- Develop methodology to determine SCR minimum operating temperature as a function of unit specific operating parameters

2006



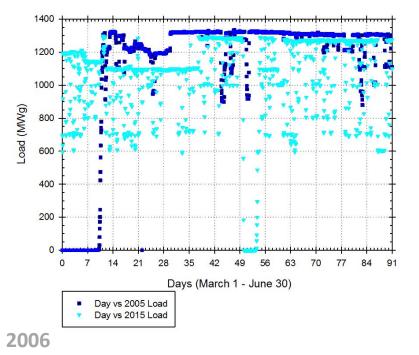
Plant Demonstrations

- First Energy Sammis: Testing new methodology for reduced load applications and impact of ABS on SCR (2.7% sulfur coal)
- First Energy Pleasants: Further testing of methodology with reduced load application at site firing 4% sulfur coal

2006

W.H. SAMMIS PLANT - UNITS 6 and 7 STRATTON, OHIO

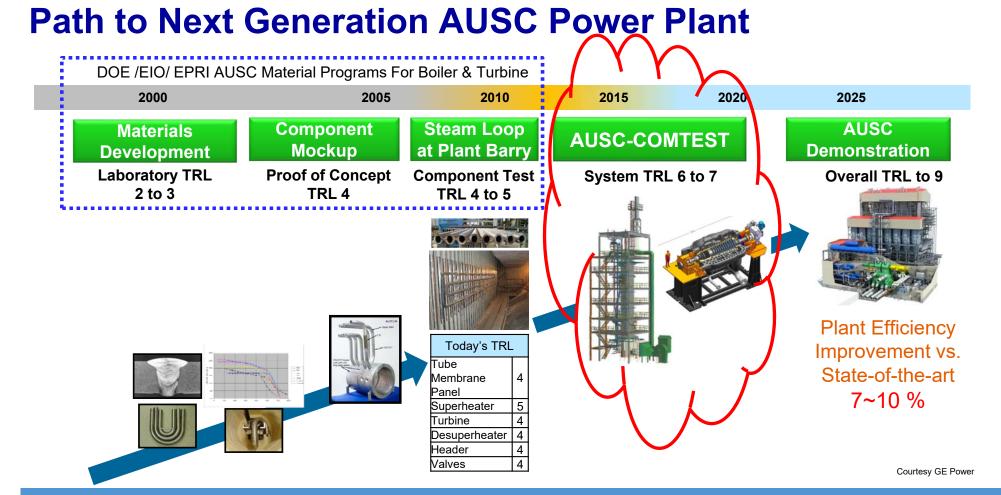
BABCOCK & WILCOX UNIVERSAL PRESSURE (UPT) BOILER



Implementation

Current Flexible Operations At TVA Cumberland

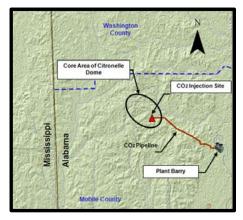
- Lab study assessing long term impacts from repeated ABS deposition
- Submittal of peer reviewed journal article on ABS formation temperature



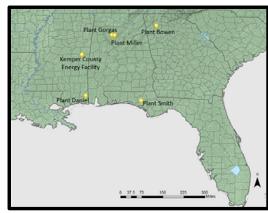
AUSC ComTest will be a final step prior to a commercial scale first-of-kind Power Plant

Current Collaborations with NETL

National Carbon Capture Center

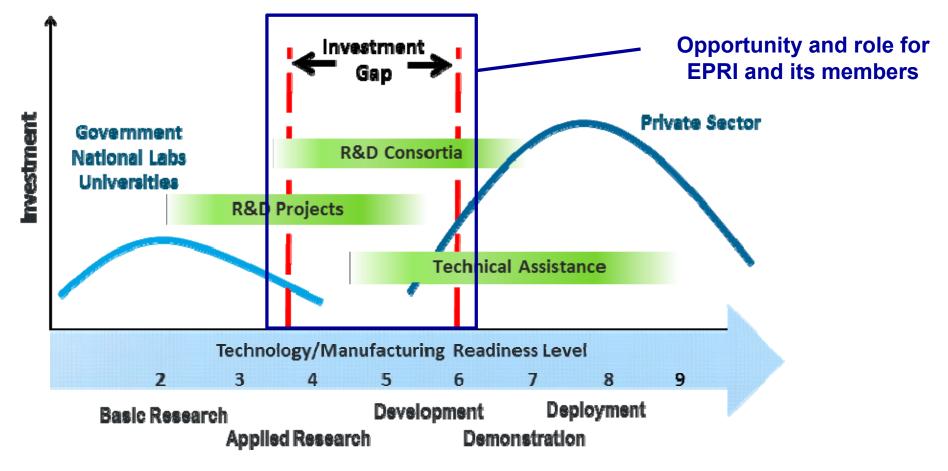

Post Combustion Test Facility

AUSC Technology Path


World's first 1400°F steam loop

SECARB CO₂ Storage Demonstration

SECARB Citronelle Storage Test


Brine Extraction Storage Test

Plant Smith is located near Panama City

Addressing the Research Gap

DOE Advanced Manufacturing Office MYPP 2017 Draft

Technology Maturation Together

- Expansion of the range of solutions
- Rapid adoption of emerging technologies is needed
- Collaboration is essential

Together...Shaping the Future of Electricity

