

Importance of Crosscutting Research on Power Plant Efficiency & Reliability

March 21, 2017

Angelos Kokkinos Director, Office of Advanced Fossil **Technology Systems**

1 | Office of Fossil Energy www.energy.gov/fe

Major Demonstrations

First Generation carbon capture systems built to validate first of a kind fully integrated CCUS projects full scale demonstration projects for power and industrial sectors

2016

Advanced Energy Systems

Technologies that greatly improve plant efficiencies, reduce CO₂ capture costs, increase plant availability, and maintain the highest environmental standards

Carbon Capture

R&D and scale-up technologies for capturing CO₂ from new and existing industrial and power-producing plants

Carbon Storage

Safe, cost- effective, and permanent geologic storage of CO₂ in depleted oil and gas fields and other formations

Cross Cutting Research

Materials, sensors, and advanced computer systems for future power plants and energy systems integrated with CCS

- Increased use of incentivized renewable energy
- Fossil units are being asked to provide grid reliability
- Fossil units:
 - Not designed for duty required
 - R&D funding has been lacking
 - Inefficient operation

Source: R.K Smith Report on Impact of Renewables of Fossil

Source: EIA Power Generation from Coal

Report

Impact of Operating Conditions on Efficiency

National Energy Technology Laboratory

- Partial load operation lower efficiency
- Fast ramping (up or down) reduces efficiency
- Ramping impacts reliability of equipment

Source: EIA Power Generation from Coal Report

Basis: 10,000 Btu/kWh (net)

Parameter	Change	Heat Rate Change, %
Main Steam Temperature	-10 °F	0.17
Hot Reheat Temperature	-10 °F	0.16
Main Steam Pressure	-1%	0.06
Condenser Pressure	+0.5 in Hg	0.6
Feedwater Temperature	-10 °F	0.27
Superheater Spray Flow	+1% of steam flow	0.025
Reheat Spray Flow	+2% of steam flow	0.4
Auxiliary Steam Flow	+ 0.5% of Cold Reheat	0.35
Excess O ₂	+ 1%	0.2
Auxiliary Power	1 MW	0.2
APH Exit Temperature	+ 10 °F	0.25

Source: Kokkinos, et. al., AREGC Meeting, 2015 Biloxi MS

Condenser

- Largest heat loss in power plant
- Cooling water temperature has most significant impact
- Condenser pressure matches turbine performance
- Improve heat transfer:
 - Materials?
 - Design?

Impact on Reliability

Controls

Advanced monitors and instrumentation

- Wireless transmission
- Embedded in equipment and material
- Capable of operating reliably in harsh environment

≫ Predictive tools/software

- Convert from "scheduled" to "predictive" maintenance
- Dynamic data analysis

≫Online measurements

- Water chemistry
- Tube thickness loss
- Weld integrity

Water

⊘ Condenser

- Improve heat transfer
- Eliminate water use

Materials

- **Develop "designer" materials**
- *≫Address material reliability*
- **≫** Predictive tools for:
 - Weld failure
 - Material failure
 - Fireside/waterside corrosion

THANK YOU

12 | Office of Fossil Energy _____energy.gov/fe

