Integrated Water-Gas-Shift Pre-Combustion Carbon Capture Process

Gökhan Alptekin, PhD TDA Research, Inc. Wheat Ridge, CO galptekin@tda.com

2017 Gasification Systems Project Review

March 20, 2017

DE-FE0026142

October 1, 2015 – March 31, 2018

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Objectives

- The project objective is to demonstrate techno-economic viability of an integrated WGS catalyst/CO₂ removal system for IGCC power plants and CTL plants
 - A high temperature PSA adsorbent is used for CO₂ removal above the dew point of the synthesis gas
 - A commercial low temperature catalyst is used for water-gas-shift
 - An effective heat management system

Project Tasks

- Design a fully-equipped slipstream test unit with 10 SCFM raw synthesis gas treatment capacity
- Design and fabricate CFD optimized reactors capable of managing the exothermic WGS reaction while maintaining energy efficiency
- Demonstrate all critical design parameters including sorbent capacity, CO₂ removal efficiency, extent of WGS conversion as well as H₂ recovery for over 2,000 hr using coal synthesis gas
- Complete a high fidelity process design and economic analysis

Project Partners

Project Duration

- Start Date = October 1, 2014
- End Date = March 31, 2018 (no-cost extension requested)
 <u>Budget</u>
- Project Cost = \$5,632,619
- DOE Share = \$4,506,719
- TDA and its partners = \$1,125,900

3

Presentation Outline

- TDA's Approach
- TDA's Process
- Bench-Scale Results
- Modeling Results
- Prototype Unit Design and Fabrication
- Techno-economic Analysis
- Future Plans

TDA's Approach

- Conventional IGCC plants use multi-stage WGS with inter-stage cooling
 - WGS is an equilibrium-limited exothermic reaction
- Water is supplied at concentrations well above required by the reaction stoichiometry to completely shift the CO to CO₂

3-stage WGS unit as described in the DOE/NETL-2007/1281

- In the process, high temperature CO₂ adsorbent is used to shift the CO <u>at</u> <u>low steam:carbon ratios</u>
- Reduced water addition increases process efficiency

5

TDA's Sorbent

- TDA's uses a mesoporous carbon modified with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at elevated temperatures
 - Because CO₂ is not bonded via a covalent bond, the energy input for regeneration is low
- Heat of CO₂ adsorption is 4.9 kcal/mol for TDA sorbent
 - Comparable to that of Selexol
- Net energy loss in sorbent regeneration is similar to Selexol, but a much higher IGCC efficiency can be achieved due to high temperature CO₂ capture

 Pore size can be finely tuned in the 10 to 100 A range

Mesopores eliminates diffusion limitations and rapid mass transfer, while enables high surface area

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354 US Pat. Appl. 61790193, Alptekin, Jayaraman, Copeland "Precombustion Carbon Dioxide Capture System Using a Regenerable Sorbent"

Operating Conditions

- CO₂ is recovered via combined pressure and concentration swing
 - CO₂ recovery at ~150 psia reduces energy need for CO₂ compression
 - Small steam purge ensures
 high product purity
- Isothermal operation eliminates heat/cool transitions
 - Rapid cycles reduces cycle time and increases sorbent utilization
- Similar PSA systems are used in commercial H₂ plants and air separation plants

Integrated WGS/CO₂ Capture System

- Reducing the use of excess steam improves power cycle efficiency
 - Lower energy consumption to raise the steam
- Process intensification could potentially reduce the number of hardware components and cost

Sorbent's point of view:

 Less dilution with water increases CO₂ partial pressure and in turn improves sorbent's working capacity

Application to CTL

Sorbent Development Work

TDA 0.1 MW pre-combustion carbon capture unit installed at the National Carbon Capture Center

- 0.1 MW_e test in a world class IGCC plant to demonstrate full benefits of the technology
 - Field Test #1 at NCCC
 - Field Test #2 at Sinopec Yangtzi Petrochemical Plant, Nanjing, Jiangsu Province, China
- **•** Full operation scheme
 - 8 reactors and all accumulators
 - Utilize product/inert gas purges
 - \square H₂ recovery/CO₂ purity

Yangtzi Petro-chemical Plant

Sorbent and Catalyst for Field Tests

Sulfur Sorbent and WGS Catalyst

CO₂ Sorbent for Field Tests

- 3.5 m³ of TDA's CO₂ sorbent has been produced for use in the field tests
- Warm gas Sulfur removal sorbent and High and Low Temperature WGS catalysts have been procured from Clariant

NCCC Field Test – Early Work

- 90+% capture at steam:CO ratio= 1:1.1 with average 96.4% CO conversion
- All objectives met (no coking etc.) but high reactor T was observed

RESEARCH

12

Technology Status/R&D Needs

- Sorbent is developed under a separate DOE project (DE-FE0000469)
- WGS catalyst is commercially available mature technology
- Early-stage concept demonstration has already been completed (DE-FE0007966)
 - Integrated sorbent/catalyst operation
 - Pointed out the need to incorporate effective heat management
- Key R&D need is the design/development of a high fidelity prototype to fully demonstrate the concept using actual coalderived synthesis gas
 - A 10 kg/hr CO₂ removal is being developed
 - Testing of the high fidelity system will be carried out at the NCCC and Praxair
 - Original test site Wabash River IGCC plant is no longer available

<u>Year 1</u>

- Design a field test unit including detailed design of the sorbent reactors, using multi-component adsorption and CFD simulation models
- Have the input and full approval of test sites
- **Complete sorbent manufacturing based on the current Manufacturing Plan**
- Initiate a long-term sorbent life evaluation (8,000 cycles)

<u>Year 2</u>

- **Complete evaluation of single integrated reactor with simulated syngas**
- Revise our reactor design based on results from single reactor tests
- **Complete fabrication of the slipstream test unit**
- Continue long-term testing of the sorbent (20,000 cycles)

<u>Year 3</u>

- Complete long-term testing of the sorbent (30,000 cycles)
- **Complete field tests at the NCCC and Praxair Plants**
- **Complete a high-fidelity system design/analysis and cost estimate**
- **Complete an Environmental, Health and Safety (EHS) assessment**

T Profiles - During CO₂ Capture Only

- Heat generated during adsorption is removed during regeneration
 - Near isothermal operation

15

Heat Wave WGS & CO₂ Capture

- Integrated WGS & CO_2 capture results in higher ΔT
- Not ideal for CO₂ capture (the WGS heat accumulates in the beds)

Conventional Heat Management Options

Heat Integrated WGS & CO₂ Capture

- Advanced heat management concept based on direct water injection has proven to achieve much better temperature control
 - Also much better heating efficiency (i.e., kJ heat removed per kg water)
- Objective is to achieve a more uniform cooling without having hot or cold spots
- The temperature rise is optimal when the catalyst is distributed into two layers with water injections before each layer

T Contours (°C) Single Injection Layer

T Contours (°C) Multiple Injection Layers

Bench-Scale Evaluations

- 8L reactors were modified with the heat management options
- Successful proof-of-concept demonstrations
 have been completed
- ∆T <10°C was maintained over extended cycling (much lower than those observed in early field tests)

Injector Design

- We designed our own injector nozzles and the water output control system that will allow these to effectively operate inside the reactor hot zone between 200-350°C
- The water flow rate is controlled by controlling injector pulse duration and pulse delay time

Bench-scale Tests w/ Demo-size Reactor

- Effective operation of the water injectors were demonstrated in a fully instrumented test reactor
- Sorbent & catalyst volume is the same as in the demo system

NCCC Testing

- Testing during the G3 & G4 campaigns using at 1 SCFM scale validated the impact of water injection on bed temperature and CO conversion
 - System was tested for over 650 hours
 - CO conversion, overall carbon capture, temperature, water injection functionality

Reactor Design w/ Water Injectors

Water Injection System

- Water is injected in 3 locations along the bed
- A spacer will be inserted at each injector location to provide space for water vaporization and gas mixing

Integrated WGS/CO₂ Capture System

Fabrication of the Prototype

Reactor Vessel Fabrication

- Vessel fabrication is completed
- Design allows easy replacement of media without removing the injector assembly

Fabrication of the Prototype

• All plumbing work is complete

28

Electrical and Control Systems

 Control box is completed (electrical, heating and insulation will be completed late April 2017

Process Simulation and Analysis

IGCC plant with E-Gas[™] Gasifier operating on Bituminous Coal

#	CO ₂ Capture	Notes	Steam/ Water Addition	Overall Steam:CO Ratio	Net Efficiency % HHV
1	Conventional Technology	Reference IGCCCase with Steam addition to 1 st WGS reactor feed	Steam	2.25	31.04
2	TDA/Advanced Technology	No steam addition to 1 st WGS reactor feed; water injection into combined WGS+PSA reactor	Water	1.50	34.30
2-3	TDA/Advanced Technology	No 1 st WGS reactor & water injection into combined WGS+PSA reactor	Water	2.21	33.73
2A	TDA/Previous Technology	Steam addition to 1 st WGS reactor feed; no water injection into 2 nd WGS reactor (not combined with PSA)	Steam	2.25	33.81

- Reducing Steam:CO ratio to 1.50 w/ water addition to Integrated WGS/CO₂ Removal Reactor (2nd stage) provides a net plant efficiency of 34.30%
 - 0.5% point improvement over TDA's sorbent-only technology

IGCC plants with Shell Gasifier

Case #	Coal Type	CO ₂ Capture	Notes	Overall Steam: CO Ratio	Net Efficiency % HHV
3	Bituminous	Conventional Technology	Reference IGCC Case (H2O/CO in 1 st WGS reactor feed = 1.8 mole/mole per corresponding DoE case)	1.8	31.08
4	Bituminous	TDA/Advanced Technology	No steam addition to 1 st WGS reactor feed (H2O/CO in 1 st WGS reactor feed = 1.11 mole/mole); water injection into combined WGS+PSA reactor	1.38	33.71
5	Lignite	Conventional Technology	Reference IGCC Case (H2O/CO in 1 st WGS reactor feed = 1.8 mole/mole)	1.8	30.89
6	Lignite	TDA/Advanced Technology	No steam addition to 1 st WGS reactor feed (H2O/CO in 1 st WGS reactor feed = 1.60 mole/mole); water injection into combined WGS+PSA reactor	1.78	32.79

- Different gasifiers and coal are being evaluated
 - Better plant efficiency for all coals and gasifiers

E-Gas[™] & GE Gasifiers

Gasifier Type/Make	E-Gas		GE		
Case	1	2	2* (WGS/CO ₂)	3	4
	Cold Gas Cleanup	Warm Gas Cleanup	Warm Gas Cleanup	Cold Gas Cleanup	Warm Gas Cleanup
CO ₂ Capture Technology	Selexol TM	TDA's CO ₂ Sorbent	TDA's CO ₂ Sorbent	Selexol™	TDA's CO ₂ Sorbent
CO2 Capture, %	90	90	90	90	90
Gross Power Generated, kW	710,789	670,056	693,542	727,633	674,331
Gas Turbine Power	464,000	425,605	427,980	464,000	417,554
Steam Turbine Power	246,789	244,450	265,562	257,657	246,746
Syngas Expander Power	-	-	-	5,977	10,031
Auxiliary Load, kW	194,473	124,138	138,741	192,546	120,661
Net Power, kW	516,316	545,917	554,801	535,087	553,671
Net Plant Efficiency, % HHV	31.0	34.1	34.7	32.0	34.5
Coal Feed Rate, kg/h	220,549	212,265	212,265	221,917	213,013
Raw Water Usage, GPM/MW	10.9	10.3	10.0	10.7	10.5
Total Plant Cost, \$/kW	3,464	3,042	2,990	3,359	3,083
COE without CO ₂ TS&M, \$/MWh	136.8	120.5	118.8	133.0	121.8
COE with CO ₂ TS&M, \$/MWh	145.7	128.6	126.7	141.6	129.7
Cost of CO ₂ Captured, \$/tonne	53.2	37.4	35.8	47.3	36.1

 Efficiency is increased to 34.7% with TDA's combined WGS/CO₂ system and reduced to \$35.8/tonne

Process Economic Analysis - CTL

 Integrated WGS with CO₂ capture reduced the required selling price (RSP) for Methanol to \$438 per ST compared to \$453 per ST for a CTL plant with Rectisol

Gasifier	Shell			
Coal	Bituminous			
Case	7	8		
		Warm Gas		
	Cold Gas	Cleanup		
	Cleanup	$TDA's CO_2$		
CO ₂ Capture Technology	Rectisol [™]	Sorbent		
CO ₂ Capture, %	90	90		
Gross Power Generated, kW	320,514	292,457		
Gas Turbine Power	130,684	130,114		
Steam Turbine Power	189,830	162,342		
Syngas Expander Power	-	-		
Auxiliary Load, kW	310,729	276,851		
Net Power, kW	9,785	15,606		
Net Plant Efficiency, % HHV	-	0.35		
Methanol Production rate, ST/D	11,094	10,934		
Coal Feed Rate, kg/h	589,458	589,458		
Raw Water Usage, GPM	6,529.0	5,405.0		
Total Plant Cost, \$/kg/D	357.26	345.27		
1st year Required Selling Price (RSP)				
w/o CO2 TS&M, \$/ST	453.0	438.0		

33

Process Economic Analysis - CTL

Gasifier	Shell				
Coal	Bituminous				
Case	9	10A			
		Wann Gas			
	Cold Gas	Cleanup			
	Cleanup	TDA's CO ₂			
CO ₂ Capture Technology	Rectisol[™]	Sorbent			
CO2 Capture, %	90	90			
Gross Power Generated, kW	462,568	458,830			
Gas Turbine Power	130,283	130,519			
Steam Turbine Power	332,285	328,311			
Syngas Expander Power	-	-			
Auxiliary Load, kW	397,803	365,956			
Net Power, kW	64,764	9 2,875			
Net Plant Efficiency, % HHV	1.08	1.55			
Naphtha Production rate, ST/D	1,803	1,722			
Diesel Production rate, ST/D	4,789	4,933			
Coal Feed Rate, kg/h	793,864	793,864			
Raw Water Usage, GPM	14,032.6	12,394.0			
Total Plant Cost, \$/kg/D	949.87	864.94			
NAPHTHA					
1st year Required Selling Price (RSP)					
w/o CO2 TS&M, \$/bbl	107.0	100.0			
DIESEL					
1st year Required Selling Price (RSP)					
w/o CO2 TS&M, \$/bbl	153.0	143.0			

- Integrated WGS with CO₂ capture reduced the required selling price for Naphtha to \$100 per bbl compared to \$107 per bbl for a CTL plant with Rectisol
- Integrated WGS with CO₂ capture reduced the required selling price for Diesel to \$143 per bbl compared to \$153 per bbl for a CTL plant with Rectisol

Future Work

- **Complete fabrication of the slipstream test unit May 2017**
- **Testing of the unit at Praxair June-August 2017**
- **Testing of the unit at NCCC October-November 2017**
- Complete long-term testing of the sorbent (30,000 cycles) September 2017
- Complete a high-fidelity system design/analysis and cost estimate – March 2018
- Complete an Environmental, Health and Safety (EHS) assessment – March 2018

