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Project Objectives 

• The project objective is to demonstrate techno-economic viability 
of an integrated WGS catalyst/CO2 removal system for IGCC 
power plants and CTL plants
• A high temperature PSA adsorbent is used for CO2 removal above 

the dew point of the synthesis gas 
• A commercial low temperature catalyst is used for water-gas-shift
• An effective heat management system

• Project Tasks 
• Design a fully-equipped slipstream test unit with 10 SCFM raw 

synthesis gas treatment capacity 
• Design and fabricate CFD optimized reactors capable of managing 

the exothermic WGS reaction while maintaining energy efficiency
• Demonstrate all critical design parameters including sorbent 

capacity, CO2 removal efficiency, extent of WGS conversion as well 
as H2 recovery for over 2,000 hr using coal synthesis gas

• Complete a high fidelity process design and economic analysis
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Project Partners
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Project Duration
• Start Date = October 1, 2014
• End Date = March 31, 2018 (no-cost extension requested)
Budget
• Project Cost = $5,632,619
• DOE Share = $4,506,719
• TDA and its partners = $1,125,900



Presentation Outline
• TDA’s Approach
• TDA’s Process
• Bench-Scale Results
• Modeling Results
• Prototype Unit Design and Fabrication
• Techno-economic Analysis
• Future Plans 
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TDA’s Approach
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• Conventional IGCC plants use multi-stage WGS with inter-stage cooling
• WGS is an equilibrium-limited exothermic reaction

• Water is supplied at concentrations well above required by the reaction 
stoichiometry to completely shift the CO to CO2

• In the process,  high temperature CO2 adsorbent is used to shift the CO at 
low steam:carbon ratios

• Reduced water addition increases process efficiency

3-stage WGS unit as described in the DOE/NETL-2007/1281



• TDA’s uses a mesoporous carbon 
modified with surface functional 
groups that remove CO2 via 
strong physical adsorption
• CO2-surface interaction is strong 

enough to allow operation at 
elevated temperatures 

• Because CO2 is not bonded via 
a covalent bond, the energy 
input for regeneration is low

• Heat of CO2 adsorption is 4.9 
kcal/mol for TDA sorbent
• Comparable to that of Selexol

• Net energy loss in sorbent 
regeneration is similar to Selexol, 
but a much higher IGCC 
efficiency can be achieved due to 
high temperature CO2 capture

US Patent 9,120,079, Dietz, Alptekin, Jayaraman “High Capacity 
Carbon Dioxide Sorbent”,  US 6,297,293; 6,737,445; 7,167,354
US Pat. Appl. 61790193, Alptekin, Jayaraman, Copeland “Pre-
combustion Carbon Dioxide Capture System Using a Regenerable
Sorbent”

Pore size can be finely tuned in 
the 10 to 100 A range
Mesopores eliminates diffusion 
limitations and rapid mass 
transfer, while enables high 
surface area

TDA’s Sorbent
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Operating Conditions
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Syngas Inlet 
240oC, 500 psia 

40% CO2  
PC02 = 200 psia

Syngas Exit 
250oC, 492 psia          

< 1% CO2  
PC02 < 5 psia

Regen. Exit
240oC, 150 psia
50% CO2/Steam
PCO2 = 75 psia

Regen. Inlet
250oC, 158 psia

100% H2O
PCO2 = 0 psia

Adsorption Desorption

• CO2 is recovered via  
combined pressure and 
concentration swing
• CO2 recovery at ~150 psia

reduces energy need for CO2
compression

• Small steam purge ensures 
high product purity

• Isothermal operation 
eliminates heat/cool 
transitions 
• Rapid cycles reduces cycle 

time and increases sorbent 
utilization

• Similar PSA systems are 
used in commercial H2 plants 
and air separation plants

Source: Honeywell/UOP 



Integrated WGS/CO2 Capture System

8

• Reducing the use of excess steam improves power cycle efficiency
• Lower energy consumption to raise the steam

• Process intensification could potentially reduce the number of 
hardware components and cost

Sorbent’s point of view:
• Less dilution with water increases CO2 partial pressure and in turn 

improves sorbent’s working capacity



Application to CTL
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Sorbent Development Work

0.1 MWe test in a world class IGCC plant to 
demonstrate full benefits of the technology

Field Test #1 at NCCC 
Field Test #2 at Sinopec Yangtzi Petro-
chemical Plant, Nanjing, Jiangsu 
Province, China 

Full operation scheme
8 reactors and all accumulators
Utilize product/inert gas purges 
H2 recovery/CO2 purity Yangtzi Petro-chemical Plant

TDA 0.1 MW pre-combustion carbon capture unit installed at the National Carbon Capture Center
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Sorbent and Catalyst for Field Tests
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• 3.5 m3 of TDA’s CO2 sorbent has been 
produced for use in the field tests

• Warm gas Sulfur removal sorbent and 
High and Low Temperature WGS 
catalysts have been procured from 
Clariant

CO2 Sorbent for Field TestsSulfur Sorbent and WGS Catalyst



NCCC Field Test – Early Work
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• 90+% capture at steam:CO ratio= 1:1.1 with average 96.4% CO conversion 
• All objectives met (no coking etc.) but high reactor T was observed



Technology Status/R&D Needs
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• Sorbent is developed under a separate DOE project (DE-FE0000469)
• WGS catalyst is commercially available mature technology
• Early-stage concept demonstration has already been completed 

(DE-FE0007966)
• Integrated sorbent/catalyst operation
• Pointed out the need to incorporate effective heat management

• Key R&D need is the design/development of a high fidelity 
prototype to fully demonstrate the concept using actual coal-
derived synthesis gas
• A 10 kg/hr CO2 removal is being developed 
• Testing of the high fidelity system will be carried out at the NCCC 

and Praxair
• Original test site Wabash River IGCC plant is no longer available



Project Structure

14

Year 1
Design a field test unit including detailed design of the sorbent reactors, 
using multi-component adsorption and CFD simulation models 
Have the input and full approval of test sites
Complete sorbent manufacturing based on the current Manufacturing Plan
Initiate a long-term sorbent life evaluation (8,000 cycles)

Year 2
Complete evaluation of single integrated reactor with simulated syngas 
Revise our reactor design based on results from single reactor tests 
Complete fabrication of the slipstream test unit
Continue long-term testing of the sorbent (20,000 cycles)

Year 3
Complete long-term testing of the sorbent (30,000 cycles)
Complete field tests at the NCCC and Praxair Plants
Complete a high-fidelity system design/analysis and cost estimate
Complete an Environmental, Health and Safety (EHS) assessment



T Profiles - During CO2 Capture Only
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Gas 
flow

• Heat generated during adsorption is removed during regeneration
• Near isothermal operation

t = 0 s t = 30 s t = 60 s t = 90 s t = 120 s



Heat Wave WGS & CO2 Capture
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• Integrated WGS & CO2 capture results in higher T 
• Not ideal for CO2 capture (the WGS heat accumulates in the beds)



Conventional Heat Management Options
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Cooling Jacket Immersed Tube (1) Immersed Tubes (3)
10 kg/hr CO2 Removal Pilot Test System – 6” reactors



Heat Integrated WGS & CO2 Capture
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• Advanced heat management  
concept based on direct water 
injection has proven to achieve 
much better temperature 
control
• Also much better heating 

efficiency (i.e., kJ heat 
removed per kg water) 

• Objective is to achieve a more 
uniform cooling without having 
hot or cold spots

• The temperature rise is optimal 
when the catalyst is distributed 
into two layers with water 
injections before each layer

T Contours (°C) Single Injection Layer

T Contours (°C) Multiple Injection Layers



Bench-Scale Evaluations
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• 8L reactors were modified with the heat 
management options 

• Successful proof-of-concept demonstrations 
have been completed

• T <10°C was maintained over extended cycling (much lower than 
those observed in early field tests)

desorption adsorption



Injector Design
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We designed our own injector 
nozzles and the water output control 
system that will allow these to 
effectively operate inside the reactor 
hot zone between 200-350°C
The water flow rate is controlled by 
controlling injector pulse duration 
and pulse delay time



Bench-scale Tests w/ Demo-size Reactor
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Effective operation of the water 
injectors were demonstrated in a 
fully instrumented test reactor
Sorbent & catalyst volume is the 
same as in the demo system



NCCC Testing
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• Testing during the G3 & G4 campaigns using at 1 SCFM scale validated the 
impact of water injection on bed temperature and CO conversion
• System was tested for over 650 hours 
• CO conversion, overall carbon capture, temperature, water injection functionality

CO Inlet

CO Exit

CO Inlet Conc.= 6-8% vol.



Reactor Design w/ Water Injectors
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Water Injection System
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Injection NozzleSorbent Spacer

Sorbent 
Support 
Screen

• Water is injected in 3 locations along the bed
• A spacer will be inserted at each injector location to 

provide space for water vaporization and gas mixing



Integrated WGS/CO2 Capture System
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Fabrication of the Prototype
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Reactor Vessel Fabrication
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• Vessel fabrication is completed
• Design allows easy replacement of media without removing the 

injector assembly



Fabrication of the Prototype
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• All plumbing work is complete



Electrical and Control Systems
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• Control box is completed (electrical, heating and insulation will be 
completed late April 2017



Process Simulation and Analysis 
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# CO2 Capture Notes
Steam/
Water 

Addition

Overall 
Steam:CO

Ratio

Net 
Efficiency

% HHV

1 Conventional 
Technology

Reference IGCCCase with Steam 
addition to 1st WGS reactor feed Steam 2.25 31.04

2 TDA/Advanced 
Technology

No steam addition to 1st WGS reactor 
feed; water injection into combined 
WGS+PSA reactor 

Water 1.50 34.30

2-3 TDA/Advanced 
Technology

No 1st WGS reactor & water injection 
into combined WGS+PSA reactor Water 2.21 33.73

2A TDA/Previous 
Technology

Steam addition to 1st WGS reactor 
feed; no water injection into 2nd WGS 
reactor (not combined with PSA)

Steam 2.25 33.81

IGCC plant with E-GasTM Gasifier operating on Bituminous Coal

• Reducing Steam:CO ratio to 1.50 w/ water addition to Integrated WGS/CO2
Removal Reactor (2nd stage) provides a net plant efficiency of 34.30% 
• 0.5% point improvement over TDA’s sorbent-only technology



IGCC plants with Shell Gasifier
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Case # Coal Type CO2 Capture Notes Overall
Steam: CO 

Ratio

Net 
Efficiency

% HHV

3 Bituminous Conventional 
Technology

Reference IGCC Case  (H2O/CO in 1st

WGS reactor feed = 1.8 mole/mole per 
corresponding DoE case)

1.8 31.08

4 Bituminous TDA/Advanced 
Technology

No steam addition to 1st WGS reactor 
feed (H2O/CO in 1st WGS reactor feed 
= 1.11 mole/mole); water injection into 
combined WGS+PSA reactor

1.38 33.71

5 Lignite Conventional 
Technology

Reference IGCC Case (H2O/CO in 1st

WGS reactor feed = 1.8 mole/mole) 1.8 30.89

6 Lignite TDA/Advanced 
Technology

No steam addition to 1st WGS reactor 
feed (H2O/CO in 1st WGS reactor feed 
= 1.60 mole/mole); water injection into 
combined WGS+PSA reactor

1.78 32.79

• Different gasifiers and coal are being evaluated 
• Better plant efficiency for all coals and gasifiers



E-GasTM & GE Gasifiers

• Efficiency is increased to 34.7% with TDA’s combined WGS/CO2
system and reduced to $35.8/tonne
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Process Economic Analysis - CTL
Integrated WGS with CO2 capture reduced the required selling price (RSP) for 
Methanol to $438 per ST compared to $453 per ST for a CTL plant with Rectisol
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Process Economic Analysis - CTL

Integrated WGS with CO2
capture reduced the required 
selling price for Naphtha to 
$100 per bbl compared to 
$107 per bbl for a CTL plant 
with Rectisol
Integrated WGS with CO2
capture reduced the required 
selling price for Diesel to $143 
per bbl compared to $153 per 
bbl for a CTL plant with 
Rectisol
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Future Work
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Complete fabrication of the slipstream test unit – May 2017
Testing of the unit at Praxair – June-August 2017
Testing of the unit at NCCC – October-November 2017
Complete long-term testing of the sorbent (30,000 cycles) –
September 2017
Complete a high-fidelity system design/analysis and cost 
estimate – March 2018
Complete an Environmental, Health and Safety (EHS) assessment 
– March 2018


