

DRY SOLIDS PUMP

Coal Feed Technologies (DSP-CFT)

DOE/NETL FE0012062 POP - 10/1/2013 - 9/31/2017

Timothy Saunders

Gas Technology Institute

Canoga Park, CA

Timothy.saunders@gastechnology.org

Project Goals and Objectives

Overall Goals:

- Develop an innovative high-pressure pump feed system
- Verify it will reduce CAPEX and OPEX of coal gasification plant for power production with carbon capture
- Support first of a kind commercially relevant demonstration in 2018

Specific Objectives are:

- 1. Demonstrate high-pressure solids feed system operation with U.S. subbituminous and lignite coals
- 2. Install and test component upgrades to the DSP that improve overall performance compared to the current prototype DSP
- 3. Perform a techno-economic study comparing the DSP feed system to a dry solids lock-hopper feed system

Milestones:

Deliver Illinois #6 into 150 psi with Subscale DSP

Confirm low rank coal performance matches Ill#6 on Subscale DSP

Deliver Illinois #6 into 500 psi pressure with prototype

Presentation Outline

- Prior DSP Program description
- Prototype DSP testing and results
- DSP-CFT program
- DSP-CFT program subscale DSP
- Subscale DSP testing and results
- DSP-CFT program upgrades to prototype DSP

Note – IP development currently limits DSP configurations shown

Prior DSP Program Objective and Concept

Develop a solids pump that meets "Compact Gasifier" commercial gasification industry requirements - 1200 psi, 400 TPD (demonstration), 500 psi, 600 TPD

- "Caterpillar" track moving walls forming parallel sided duct
- Operation based on "solids lock-up" physics which achieved coal injection into 1,000 PSI in prior DOE-funded tests
- Design uses "solids plug" gas seal also proven in prior DOE-funded research
- "Linear" concept offers advantages over rotary solids pump:
- Higher energy efficiency
- Simply scalable to large capacities
- Feed material flexibility

Prototype Dry Solids Pump

Prototype DSP Installed in Test Stand

Pump installed in the Test Stand

Prototype Testing Results

Pump fundamentals demonstrated in Prototype testing:

- Plug consolidation to density of 60 lb./ft³ repeatable
- Motor torque required 80,000 ft-lbf
- Static plug sealed 300 psig for planned 30 minutes
- Dynamic extrusion against 55 psig for 27 minutes at 51 TPD

Coal extrusion against gas pressure of 97 psig

Issues limiting prototype performance:

- Coal transition irregularities from dynamic to stationary zones disrupting seal
- Leakage between tiles and casing impacting track trajectory
- Plug generation beyond optimum location in flow path causing high torque

Prototype pump size, weight a challenge for development efficiency

Accelerate development using <u>subscale DSP</u> decided for DSP-CFT Program

DSP-CFT Subscale Hardware/Instrumentation

> 1:7 Scale Machine

- 2.14" x .42" working zone
- 150 psig hardware limit
- SLM manufacturing used
- Active hopper developed

> Pump Data Collected

- Motor RPM
- Tile Counter
- Torque
- Internal load cells
- Discharge pressure

Subscale Configurations Evaluated

- > Major features
 - 3 Exit configurations
- > Minor features
 - Exit geometry/throttling
 - 3 Tile shapes
 - Tile orientation/alignment
 - Working zone shape/size
 - Fines management

Subscale Testing – Plug Formation

- > Run pump (with blocked exit if necessary) to form initial plug
- > (Remove plug and) run pump to specified torque value

Subscale Testing – Static Pressure

> Pump off, ramp and hold set discharge pressure

Static Pressure Capability

- > Static pressure demonstrated up to hardware limit (150 psig)
- > Capability trends with consolidation at gas interface
 - Consolidation roughly correlates with torque
- > Exit configuration also has effect on capability
 - Longer exit geometry can seal better at lower consolidation

Subscale Testing – Extrusion Run

- > While running pump, pressurize discharge after crossing torque threshold
 - Narrow window
 to apply gas
 pressure after
 torque threshold
 and before
 torque limit

Baseline (Prototype) Exit Configuration Results

- > Torque either climbs (when exit sufficiently restrictive) or drops to tare value (when exit insufficiently restrictive)
 - Unable to find steady state torque with initial exit configuration geometry variations

Baseline Extrusion Pressure Test Results

- > Extrusion pressure capability trends with torque
- > Relatively insensitive to minor variation of exit configuration
 - For any individual configuration, variation test-to-test attributed mainly to inconsistent consolidation at the gas seal location

Key Observations for Baseline Configuration

- > Subscale duplicated issues exhibited by prototype
- > Fluidized fines control at loading critical to pump operation
- > Inconsistent consolidation at gas seal interface unacceptable
 - High consolidation in one area drives torque requirement
 - Poor consolidation in another area provides leak path
 - Sensitive to small asymmetries in pump assembly
- > Gas seal location may be sensitive to cyclical tile-exit interaction
- > Moved to revised outlet configuration exit 2

Exit Configuration 2

> Continued success demonstrating static pressure and extrusion pressure capability

> Unable to find steady state torque

		Net plug	Net free	Net pressure	Extrusion	Static
Exit		formation	extrusion	extrusion	pressure	pressure
Length	Throttle	' ' ' '	torque (ft-lb)			(psi)
short	no	100	500	n/a	n/a	19
short	no	25	500	n/a	n/a	24
short	no	500	n/a	n/a	n/a	153
short	yes	5	500	n/a	n/a	36
long	no	10	500	n/a	n/a	152*
long	no	5	300	n/a	n/a	131
long	n/a	25	300	700	95	n/a
medium	no	10	300	n/a	n/a	27
medium	no	n/a	500	n/a	n/a	18.6
long	no	5	215	665	57	155
short	yes	5	300	n/a	n/a	41
short	yes	n/a	500	n/a	n/a	52
medium	yes	5	300	n/a	n/a	39
medium	yes	5	500	n/a	n/a	153
long	yes	5	300	n/a	n/a	113
long	yes	10	300	n/a	n/a	74
long	yes	30	625	n/a	n/a	56
long	yes	n/a	665	n/a	n/a	59
long	yes	n/a	630	n/a	n/a	153
	Key:	No Leak		Leak		

Exit Configuration 3

> Pressure capability continues to trend with torque/consolidation

		Pear	Natitorqualat	Fase
Net for sue	m ta	Dynamic	9884 351 8M G	Stat :
Before Cas	The .	Chi	0'041-'0	CM.
500	4.8	613	473	65
900	61	51	5-8	613
790	4.3	4.3	473	151
500	92	96	630	55
500	213	65	Immediate	57
300	4.8	61	Imm ediate	58
500	2.3	72	Imm ediate	60
500	55	54	1/2 tile	57
688	r-a	v9	#13	118
300	52	51	Imm ediate	55
987	r.a	v9	#13	76/83
300	13	97	763	155
200	13	52	Imm ediate	55
191	718	67	765	109
250	213	70	763	91
:14	6.8	26'47	2567765	64
150	718	80	755	102
150	7.3	88	765	145/140
200	418	90	1.50	619
200	218	127	765	147/142
474	4.5	6.9	4/3	618
766	P18	619	P/g	59
200	4.3	107	826	613
800	7.3	101	152	613
200	r.a	146	6.07	615
800	ria	132*	746	154*
225	7 - 2	74	135	6.13
668	6.3	613	7/3	85
25.5	212	75	394	6.3
240	213	145**	766	152**
238	718	71	428	613
217	7.3	102	173	6.3

Key				
Leak event				
Small/steady leak				
No Leak				

Exit 3 Configuration Development

- > Geometry/dimensions iterated to reduce steady state torque requirement while still providing gas seal mechanism
- > Some geometry tested can amplify the effect of discharge pressure on torque required

Evolving Exit 3 Configuration

> Pressure capability continues to trend with torque/consolidation

Final Exit with Revised Tile Configuration

> Achieved *steady state*

> Extrusion at 90 psig, no leakage

 Features that reduce free-extrusion torque can amplify the effect of pressure on pump torque requirement

Successful Development of Torque Reduction

> Design evolved until steady state operation achieved below pump torque limit

Subscale Test Summary

- Successful testing of a variety of configurations undertaken with subscale unit
- Subscale pump components optimized;
 - Inlet configurations
 - Active flow enhancements at inlet
 - Tiles arrangements and shape configurations
 - Outlet configurations
- Subscale pump design pressure limit of 150 psi consistently achieved
 - Able to increase efficiency by torque optimization
 - Design modifications for prototype identified and in development
- Final subscale configuration being transferred to prototype
- Low rank fuel types testing to begin shortly

Fuel Types for Evaluation

- The CFT program will evaluate low rank fuel types in the Subscale DSP
- Fuels will include Sub-bituminous coal and Lignite
- Pet Coke as well as biomass-coal blends may be tested schedule/budget permitting
- Objective to identify any fuel type impact on DSP operation and whether modifications are required for handling at commercial scale
- Determine feed system configuration for meeting each fuels characteristics and providing best overall DSP system performance
- Identify cost of DSP customization if required to handle low rank fuel specifications

DSP-CFT Prototype Program Status

- Subscale testing of proposed modified components completed
- Low-rank fuel type evaluation commencing shortly
- Evaluation of prototype modifications and cost analysis complete
- Manufacture of prototype upgraded components in work
- Modifications to prototype required for component upgrades completed
- Testing on prototype to begin in 2nd Quarter 2017
- Program on track to conclude 3rd Quarter 2017

Acknowledgement

GTI Pump Test Team: Joe Caravella

Harold Lacquement

Tom Emerson

Mike Kutin

GTI wishes to thank the Department of Energy and the National Energy Technology Laboratory for their support of this program

Turning Raw Technology into Practical Solutions

timothy.saunders@gastechnology.org www.gastechnology.org | @gastechnology

Back Up Charts (follow)

Subscale Instrumentation

Motor RPM

2. Torque

Upstream of gear split

3. Track load x 12

3 load cells per roller path

4. Vertical load

3 load cells around the flange

5. Gas pressure x 2

Case (A) and discharge (B)

Pneumatic System

> GN2 for static and extruding pressure tests

