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Chemical Looping Process with Oxygen Carriers
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Chemical looping processes minimizes/eliminates the efficiency loss for gas separation
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Evolution of OSU Chemical Looping Technology

Particle Fixed Bed Bench Sub-Pilot CDCL Pilot Scale
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Oxygen Carrier Synthesis
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OSU Chemical Looping Platform Processes
Two Basic Modes

Counter-current: Full Combustion Co-current: Full Gasification
Depleted Air Depleted Air
Simplicity:
One Loop
CO, out Unique Reducer Fuel in
Configuration:
Moving Bed
MOVING BED Unique Flow MOVING BED
REDUCER Controller: REDUCER
Non-Mechanical
L-Valve
Fuel in

FLUIDIZED BED
"B COMBUSTOR
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Syngas Chemical Looping

Main Reactions

p
Reducer: CHO,+Q +Fe,0; > CO,+H,0 +Fe

Depleted Air

Oxidizer:  Fe +H,0 - Fe;0,+H, +Q

Combustor: Fe;0, + O, > Fe,0, + Q
Total: CHO,+H,O0O+0,>CO,+H
X y>z 2 2 2 2
MOVING BED \ J
REDUCER
H. H,O
1.0 Fe
Fuel in
c
g 0.8
Hydrogen out Q
E Oxidizer Region
8 o0s
MOVING BED o
OXIDIZER = S - - N ,
s 0 4 h ~ -~ \\ },
. c S~ > f FeQO
Steam in g.lo ~ - N/
-.h. %
) ~. N
FLUIDIZED BED g 0.2 Reducer Region “s‘. z! ‘\
COMBUSTOR S E——— Fe;0,4
4 | _ === - Fe,O,
Air in o] 0.2 0.4 Q.6 0.8 1.0

H, conversion; molar fraction of steam

m THE OHIO STATE UNIVERSITY




Coal to Syngas Chemical Looping Process

Main reactions: Depleted Air

Reducer: Coal + H,0 + Fe,0; - CO + H, + Fe/FeO

Combustor: Fe/FeO + O, (Air) > Fe,0, +Q

Net: Coal + H,0 + O, (Air) > CO+H, + Q

Coal In

Unique Reactor Design:

e Co-current moving bed reducer design R
e Tight control of gas-solid flow MOVING €D
* High fuel conversion to syngas
* Non-mechanical single loop system
* Extensive experience with non-
mechanical moving bed reactor design

Syngas Out
< =

Techno-Economic Assessment Support:

* Oxygen carrier selection: experimental and Fe/Fe0 ' FLuDIZED B0
thermodynamic analysis

e Reactor design and hydrodynamic studies Airin
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FE0023915: Syngas Chemical Looping (SCL)
Pilot Unit
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Syngas Chemical Looping Process Development
25 kW,,, Sub-Pilot Unit

Reducer Gas Profile

Oxygen Carrier Reactivity (TGA)
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*  Continuous ~99.99% syngas conversion throughout 3-day demonstration
*  Continuous hydrogen production >99.99% purity
*  >300hrs sub-pilot operations without operational issues

() o= oo stars viversiry




SCL Controls and Integration with DCS

Burner PLC
Compact Loglx 1769)

' Pressure
Pressure/@ my } Valves
Temperature Temperature Analyzer bank

4-20 mA 4-20 mA

Heater Panel

!

Flow control

Flow

q Valve indicator

\ 120 VAC

Level switch

Permissives
From NCCC

m THE OHIO STATE UNIVERSITY



Initial Solid Circulation Tests

Solid Circulation Correlation to Pressure Drop  Pressure Profile Across SCL Reactor System
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Solids Circulation Rate Pressure

e >200 hours solid circulation studies completed
* Operating pressures: 1-10 atm
* Solid circulation Rate: 95 — 1900 kg/hr

 Demonstrated non-mechanical gas sealing
between each reactor
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Preparation for April Gasifier Test

Modified Design

Heat traced Secondary Original Design

Particle Separator (SPS) and

discharge piping

* Eliminate moisture collection Separator

Secondary
=—— Particle

] Thermal

Oxidizer

on filters and discharge piping
Replaced sinter metal filters

with Gore-Tex Filters ¢

* Operating temperature: 520F 2" dia

e Fabric filters — more effective X

back-pulse

Enlarged discharge piping to

4)/ Vent

* Reduce plugging capability

* Requires 4” metal seated ball
valves

Added bypaSS tO SPS Compressed

operations while servicing SPS

* Allow flue gas to heat up prior
to brining baghouse online

 Allow for maintained Air }%
X

L

Secondary Thermal
Particle

4" dia |-

Vent

4” dia

Compressed

Air

4” dia -

Oxidizer
Separatorl
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Pilot Plant Operations

e Syngas operation initiated
* 350 Ib/hr syngas processed

* Achieved >98% syngas conversion

* Pressure balance and gas sealing maintained

e Elevated combustor temperatures confirm
redox reactions

* Achieved first large-scale demonstration of
high pressure, high temperature chemical
looping process

Gas Composition and Syngas Cenversion
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Future Work

* Achievement
* Resolved auxiliary equipment issues

* Developed successful procedure for pilot unit heat up and
pressurization while maintaining solid circulation

* Achieved operating temperature and pressure for syngas
conversion

e Continued work
* Complete preparations for gasifier operation

* Perform extended unit operations (600 hours) with >750 Ib/hr
syngas processed

* Complete techno-economic analysis update

20



FE0026185: Coal to Syngas (CTS) Sub-Pilot
Unit
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Oxygen Carrier Selection

Thermodynamic Assessment:

3 Modified Ellingham Diagram Modified Ellingham Diagram for FeAl,O,
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Experimental Screening:

TGA Studies for Oxygen Carrier Kinetics Using H, Selected Oxygen Carrier Recyclability
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Experimental Studies: Coal Volatile and Moving Bed Reducer
Volatile Cracking Studies with and without OC
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Experimental Reducer Studies: Coal Volatiles
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Project Overview

e Prepare Chemical Looping Gasification (CLG) technology for a commercially
relevant demonstration by 2020

e Design and construct an integrated CLG system at sub-pilot scale with coal as
its feedstock

— Continuously operate the system and demonstrate syngas production

— Investigate the fates of some important impurities, such as sulfur and
nitrogen

e Conduct techno-economic analysis and optimize the CLG process for efficient
electricity generation with reduced carbon emission



Sub-Pilot Commissioning and Startup
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Purpose and Methodology of TEA

* Purpose

To compare capital and lifecycle costs to DOE reference power generation
configurations

Develop process models and configurations for an IGCC power generation facilities
incorporating OSU coal to syngas chemical looping technology.

Develop economic comparison of facility designs incorporating OSU CTS technology
to IGCC reference cases.

 Methodology

Develop three process models of Coal to Syngas (CTS) technology in Aspen Plus

Incorporate OSU CTS technology into Aspen Plus IGCC process models.

Estimate capital and operating costs based on Aspen Plus modeling of processes
Perform financial analysis to determine power production costs and cost of CO,

captured.

Compare costs to DOE/NETL reference cases

OSU Coal to Syngas (CTS) Cases:

Baseline 0% CO, capture with 2 reactor CTS configuration
90+% CO, capture with 2 reactor CTS configuration
90+% CO, capture with 3 reactor CTS configuration



Case Comparison

Conventional Case (Shell Gasifier with no CO, Control)
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Coal to Syngas (CTS) Chemical Looping Gasification Process
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IGCC Design Basis

Fuel: lllinois Bituminous Coal
CO, Removal: 0% or >90% based on raw syngas carbon content
CO, Product
* CO, Purity: Enhanced Oil Recovery as listed in Exhibit 2-1 of the NETL QGESS
titled “CO, Impurity Design Parameters”. *
* CO, Delivery Pressure: 2,215 psia
* Transport and Storage (T&S): $10/tonne
Plant Size: Sufficient syngas to fire two advanced F-class gas turbines, generating
capacity 500-550 MW, net
Ambient Conditions: Greenfield, Midwestern USA
Capacity Factor: 80%
Financial Structure: High risk 10U, capital charge factor =0.124
Reference IGCC Power Production:
* |GCC cases from “Cost and Performance Baseline for Fossil Energy Plants Volume
1b: Bituminous Coal (IGCC) to Electricity Revision 2b.”



CTS 2-Reactor vs 3-Reactor Performance Comparison
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Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with
decreasing steam flow. (18% decrease from 1 to 0.5)

Syngas conversion of two reactor system does not change dramatically with decreasing steam flow. (2%
decrease from 1 to 0.5)

m THE OHIO STATE UNIVERSITY



2-Reactor CTS Block Diagram (No Capture)
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2-Reactor Performance Summary — Slurry Feed

Gross Power, kW _

Gas Turbine Power 464,000
GT Extraction Expander 3,376
Steam Turbine Power 252,254
Total 719,631
Auxiliary Loads, kW _
Oxidizer Main Air Compressor 32,226
GT Diluent Nitrogen Compressor 26,386
Main Syngas Compressor 38,162
Selexol Acid Gas Removal 4,394
Balance of Plant 25,345
Total 126,513
Net Power, kW_
Net Power 593,117
Miscellaneous Performance Metrics
HHV Net Plant Efficiency, % 394
HHV Net Plant Heat Rate, Btu/kWh 8,654
HHV Cold Gas Efficiency, % 83.7
HHV Gas Turbine Efficiency, % 37.6
LHV Net Plant Efficiency, % 40.9
LHV Net Plant Heat Rate, Btu/kWh 8,347
LHV Cold Gas Efficiency, % 80.3
LHV Gas Turbine Efficiency, % 40.6
Steam Cycle Efficiency, % 334
Steam Cycle Heat Rate, Btu/kWh 10,225
Condenser Duty, MMBtu/h 1,231
As-Received Coal Feed, Ib/h 439,985
HHV Thermal Input, kWt 1,504,294
LHV Thermal Input, kWt 1,450,910
Raw Water Withdrawal, gpm/MW,_, 7.3
Raw Water Consumption, gpm/MW_, 5.6

CO, emissions

- Close to new source EPA limit of 1,400
Ib/MW o (1,429 Ib/MW, )

Process heat recovery option

- Oxidizer spent air (unique to CTS system)

« High-quality heat is being used to heat air
instead of making steam

Potential Options to Lower CO, emissions: lower
oxidation air temperature

- More oxygen carrier
- Higher syngas CO, yield
- More nitrogen for gas turbine, less HP steam

- Higher-quality spent air heat recovery



2-Reactor Performance Summary — Slurry Feed
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Additional Work

* Sub-Pilot Demonstration
« Complete Unit Startup Activities
+ Coal feed and parametric testing
 Extended unit operations
« TEA Tasks
* Optimization to other targets/goals
* Improvement of efficiency (dry feed)
* Meeting EPA CO, emissions target of 1,400 Ib CO,/MW, gross
 Expand to other feeds
 Other coal types for regional applications
 Understanding of markets and competition
« Complete 3 TEA case studies of the CTS process
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