Reduced Cost Bond Layers for Multi-Layer Thermal/Environmental Barrier Coatings

Jeffrey W. Fergus

2017 Crosscutting Research Review
Pittsburgh, PA
20 March 2017
Participants

- **Auburn University**
 - Jeff Fergus
 - Students
 - Graduate: Honglong (Henry) Wang, Wenzhou Deng, Xingxing Zhang
 - Undergraduate: Emily Tarwater, Kai Roebbecke, Ralf Fischer, Ashley Baerlocher, Tommy Britt
 - Visiting scholars
 - Ahmet Bakal, Sudip Dasgupta

- **Plasma Processes LLC**
 - Kyle Murphree
 - Tim McKechnie
Introduction

- Thermal barrier coatings (TBCs) to increase operating temperature of gas turbine engines
- Ca-Mg-Al-Si oxides (CMAS) injected into engine degrade TBCs
- Pyrochlore oxides offer potential for improved resistance to CMAS corrosion and reduced thermal conductivity
Outline

- Thermal conductivity
- Cubic fluorite vs. pyrochlore
- CMAS composition
Experimental

- Synthesis of pyrochlore
 - Co-precipitation
- CMAS exposure
 - Melt / solidify Ca-Mg-Al-Si oxide mixtures
 - Crush glass, apply to pyrochlore pellet
 - Expose to 1200-1300°C
- Characterization
 - XRD, SEM / EDS
- Thermal Conductivity
Crystal Structure

Cubic Fluorite

Pyrochlore

Ordering of Ln / Zr

A.R. Cleave (2006)

20 March 2017

CCR 2017
Plasma Sprayed Gd$_2$Zr$_2$O$_7$

Plasma-sprayed Gd$_2$Zr$_2$O$_7$ not pyrochlore
Plasma Sprayed YSZ / Gd$_2$Zr$_2$O$_7$
Gd₂Zr₂O₇: Cubic Fluorite and Pyrochlore

Gd₂Zr₂O₇

- Cubic fluorite (Sintered at 1575°C)
- Pyrochlore (Sintered at 1500°C)

Synthesize cubic fluorite Gd₂Zr₂O₇ with higher sintering temperature
Sintered $\text{Gd}_2\text{Zr}_2\text{O}_7$

- Pyrochlore
- Cubic Fluorite
Thermal Conductivity Measurement

Constant heat flux through known / unknown samples
Measure temperature gradients
Thermal Conductivity Measurement

Steel heat source / sink
Thermal Conductivity of Gd$_2$Zr$_2$O$_7$

Average κ at 300°C
Pyrochlore (blue open): 0.51 Wm$^{-1}$K$^{-1}$
Cubic Fluorite (red filled): 0.67 Wm$^{-1}$K$^{-1}$
(Student t test $P = 0.008$)
Thermal Conductivity of Gd$_2$Zr$_2$O$_7$ after CMAS Exposure at 1300°C

Pyrochlore
- Blue: No CMAS exposure
- Green: 10 hours at 1300°C
- Green: 20 hours at 1300°C

Cubic Fluorite
- Blue: No CMAS exposure
- Green: 10 hours at 1300°C
- Green: 20 hours at 1300°C
Thermal Conductivity of $\text{Gd}_2\text{Zr}_2\text{O}_7$ after CMAS Exposure at 1300°C

\[\kappa \text{ at 300°C} \]

- **Cubic Fluorite**
 - 0 hours vs. 20 hours
 - $P = 0.03$

- **Pyrochlore**
 - 10 hours vs. 20 hours
 - $P = 0.70$

- **Pyrochlore**
 - 0 hours vs. 10 hours
 - $P = 0.06$

- **Pyrochlore**
 - 0 hours vs. 20 hours
 - $P = 0.001$

- **Cubic Fluorite**
 - 20 hours
 - $P = 0.51$

20 March 2017
Cubic Fluorite $\text{Gd}_2\text{Zr}_2\text{O}_7$ after CMAS at 1300°C for 10 hours
Cubic Fluorite $Gd_2Zr_2O_7$ after CMAS at $1300^\circ C$

Mostly CMAS +Mg / ↓ Gd

$Al-Si-Ca-Gd-Zr-O$

↑Al

10 hours

20 hours
Pyrochlore Gd$_2$Zr$_2$O$_7$ after CMAS at 1300°C

Increased variation in penetration depth after 20 hours
Pyrochlore $\text{Gd}_2\text{Zr}_2\text{O}_7$ after CMAS at 1200°C for 20 hours

Dense layer forms after reaction with CMAS
Pyrochlore $\text{Gd}_2\text{Zr}_2\text{O}_7$ after CMAS at 1200°C for 40 hours

Gd-containing silicate
Zr-rich cubic fluorite

<table>
<thead>
<tr>
<th>#</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>Ca</th>
<th>Zr</th>
<th>Gd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>7</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>6</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>6</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>33</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>34</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>29</td>
<td>5</td>
</tr>
</tbody>
</table>
Cubic Fluorite $\text{Gd}_2\text{Zr}_2\text{O}_7$ after CMAS at 1200°C for 5 hours

Zr-rich cubic containing fluorite silicate

Spectrum

20 March 2017

CCR 2017
Pyrochlore $\text{Gd}_2\text{Zr}_2\text{O}_7$ after CMAS at 1300°C for 20 hours

Cubic fluorite structure after reaction

20 March 2017 CCR 2017
Pyrochlore Gd$_2$Zr$_2$O$_7$ after CMAS at 1300°C for 20 hours

Proportion of cubic fluorite higher near surface
Pyrochlore $\text{Gd}_2\text{Zr}_2\text{O}_7$ after CMAS for 20 hours

Peak position of cubic fluorite (i.e. composition) function of temperature.
Cubic Fluorite $\text{Gd}_2\text{Zr}_2\text{O}_7$ after CMAS at 1200°C

Cubic fluorite peak shifts for cubic fluorite $\text{Gd}_2\text{Zr}_2\text{O}_7$
Gd$_2$Zr$_2$O$_7$ Lattice Parameter Correction

Note: Lattice parameters for cubic fluorite are for 8 unit cells (i.e. 2a) to facilitate comparison with the pyrochlore structure.
Gd₂Zr₂O₇ Lattice Parameter

Calculated
0 Gd - Cation CN VIII: r_{Zr^{4+}} = 0.84 Å, r_{Gd^{3+}} = 1.053 Å
0.5 Gd - Cation CN VII: r_{Zr^{4+}} = 0.78 Å, r_{Gd^{3+}} = 1.0 Å

After CMAS at 1300°C
Cubic fluorite peak position not affected by original crystal structure

After CMAS at 1200°C
ZrO$_2$-Gd$_2$O$_3$ Phase Diagram

Gd / Zr in cubic fluorite increases with increasing temperature

T = tetragonal
F = cubic fluorite
M = monoclinic
P = pyrochlore
C, B, H = Gd$_2$O$_3$ phases
YSZ / $\text{Gd}_2\text{Zr}_2\text{O}_7$ coating exposure at 1200°C for 20 hours

CMAS

Air
YSZ / Gd$_2$Zr$_2$O$_7$ coating CMAS at 1200°C for 20 hours

EDS analysis (atomic%)

<table>
<thead>
<tr>
<th>Area</th>
<th>O</th>
<th>Al</th>
<th>Si</th>
<th>Ca</th>
<th>Zr</th>
<th>Gd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>1</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>1</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>73</td>
<td>2</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>74</td>
<td>2</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>72</td>
<td>2</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>70</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>
YSZ / Gd$_2$Zr$_2$O$_7$ coating x-ray diffraction

20 March 2017

25 35 45 55 65 75 85

GZO coating - CMAS for 20 hrs at 1200°C (#13 - ground powder)
GZO coating - CMAS for 20 hrs at 1200°C (#13 - powder)
GZO coating - CMAS for 20 hrs at 1200°C (#13)
GZO coating - CMAS for 20 hrs at 1200°C (#14)
GZO coating - CMAS for 20 hrs at 1200°C (#15)
GZO Coating (#12)
CMAS Compositions

<table>
<thead>
<tr>
<th>Source</th>
<th>Oxide</th>
<th>CMAS</th>
<th>CaO-lean CMAS</th>
<th>CMAS / CaCO₃</th>
<th>CMAS / CaSO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMAS</td>
<td>CaO</td>
<td>33</td>
<td>20</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>MgO</td>
<td>9</td>
<td>11</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>AlO₁·₅</td>
<td>13</td>
<td>16</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>SiO₂</td>
<td>45</td>
<td>54</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>CaO</td>
<td>—</td>
<td>—</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>CaSO₄</td>
<td>CaO</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>17</td>
</tr>
<tr>
<td>Total CaO</td>
<td></td>
<td>33</td>
<td>20</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>
Surface after CMAS Exposure at 1300°C for 20 hours

Surface morphologies similar – larger crystals on sample with CaCO$_3$.

CMAS

CMAS / CaCO$_3$

CMAS / CaSO$_4$

CaO-lean CMAS
Cross-Section after CMAS Exposure at 1300°C for 20 hours

Dense reaction layer – thickest for CaO-deficient composition
Gd$_2$Zr$_2$O$_7$ after CMAS at 1300°C for 20 hours – SEM / EDS

Elemental Distribution (mol%)
Gd$_2$Zr$_2$O$_7$ after CMAS at 1300°C for 20 hours – XRD

Gd$_2$Zr$_2$O$_7$ + CMAS at 1300°C for 20 hours

- As-corroded
- Top 20 µm removed
- Top 40 µm removed
- Before corrosion

20 March 2017

CCR 2017
Gd$_2$Zr$_2$O$_7$ after CaO-lean CMAS at 1300°C for 20 hours – SEM / EDS
Gd$_2$Zr$_2$O$_7$ after CaO-lean CMAS at 1300°C for 20 hours – XRD

Gd$_2$Zr$_2$O$_7$ + CaO-lean CMAS at 1300°C for 20 hours

As-corroded
Top 20 µm removed
Top 40 µm removed
Before corrosion

Intensity

20 March 2017

CCR 2017
Gd$_2$Zr$_2$O$_7$ after CMAS / CaCO$_3$ at 1300°C for 20 hours – SEM / EDS

Elemental Distribution (mol%)
Gd$_2$Zr$_2$O$_7$ after CMAS / CaCO$_3$ at 1300°C for 20 hours – XRD

Gd$_2$Zr$_2$O$_7$ + CaO-lean CMAS + CaCO$_3$ at 1300°C for 20 hours

- As-corroded
- Top 20 µm removed
- Top 40 µm removed
- Top 60 µm removed
- Before corrosion

25 March 2017

CCR 2017
Gd$_2$Zr$_2$O$_7$ after CMAS / CaSO$_4$ at 1300°C for 20 hours – SEM / EDS

Elemental Distribution (mol%)
Gd$_2$Zr$_2$O$_7$ after CMAS / CaSO$_4$ at 1300°C for 20 hours – XRD

Gd$_2$Zr$_2$O$_7$ + CaO-lean CMAS + CaSO$_4$ at 1300°C for 20 hours

As-corroded
Top 20 µm removed
Top 40 µm removed
Before corrosion
Effect of CMAS composition

CaO-lean reaction product
- Thickest reaction layer \((311)_{\text{CF}} / (622)_{\text{Pyr}}\)
- Lowest Gd – largest \((311)_{\text{CF}}\)

20 March 2017 CCR 2017
Uneven CMAS loading can lead to different reaction geometries.
Stress and Temperature Distributions

20 March 2017
Stress Concentration

Highest stress at CMAS / reaction layer interface

20 March 2017
CCR 2017
Conclusions

- Reaction product has higher thermal conductivity than lanthanide zirconate – higher conductivity material fills the pores
- Cubic fluorite and pyrochlore $\text{Gd}_2\text{Zr}_2\text{O}_7$ react similarly with CMAS
- More reaction with CaO-deficient CMAS