Reduced Cost Bond Layers for Multi-Layer Thermal/Environmental Barrier Coatings

Jeffrey W. Fergus

UNIVERSITY

2017 Crosscutting Research Review Pittsburgh, PA 20 March 2017

Participants

- Auburn University
 - Jeff Fergus
 - Students
 - Graduate: Honglong (Henry) Wang, Wenzhou Deng, Xingxing Zhang
 - Undergraduate: Emily Tarwater, Kai Roebbecke, Ralf Fischer, Ashley Baerlocher, Tommy Britt
 - Visiting scholars
 - Ahmet Bakal, Sudip Dasgupta
- Plasma Processes LLC
 - Kyle Murphree
 - Tim McKechnie

Introduction

- Thermal barrier coatings (TBCs) to increase operating temperature of gas turbine engines
- Ca-Mg-Al-Si oxides (CMAS) injected into engine degrade TBCs
- Pyrochlore oxides offer potential for improved resistance to CMAS corrosion and reduced thermal conductivity

Outline

- Thermal conductivity
- Cubic fluorite vs. pyrochlore
- CMAS composition

Experimental

- Synthesis of pyrochlore
 - Co-precipitation
- CMAS exposure
 - Melt / solidify Ca-Mg-AI-Si oxide mixtures
 - Crush glass, apply to pyrochlore pellet
 - Expose to 1200-1300°C
- Characterization
 - XRD, SEM / EDS
- Thermal Conductivity

Crystal Structure

Cubic Fluorite

Pyrochlore

Ordering of Ln / Zr

A.R. Cleave (2006)

20 March 2017

CCR 2017

Plasma Sprayed Gd₂Zr₂O₇

Plasma Sprayed YSZ / Gd₂Zr₂O₇

20 March 2017

CCR 2017

Gd₂Zr₂O₇: Cubic Fluorite and Pyrochlore

3000

2500

2000

SAMUEL GINN College of Engineering

Liquid

F + H

F + B

Sintered Gd₂Zr₂O₇

20 March 2017

CCR 2017

Thermal Conductivity Measurement

Constant heat flux through known / unknown samples Measure temperature gradients

20 March 2017

CCR 2017

Thermal Conductivity Measurement

20 March 2017

CCR 2017

UNIVERSITY SAMUEL GINN College of Engineering

Thermal Conductivity of Gd₂Zr₂O₇

Thermal Conductivity of Gd₂Zr₂O₇ after CMAS Exposure at 1300°C

20 March 2017

Thermal Conductivity of Gd₂Zr₂O₇ after CMAS Exposure at 1300°C

UNIVERSITY Samuel Ginn College of Engineering

Cubic Fluorite Gd₂Zr₂O₇ after CMAS at 1300°C for 10 hours

20 March 2017

CCR 2017

UNIVERSITY SAMUEL GINN College of Engineering

Pyrochlore Gd₂Zr₂O₇ after CMAS at 1300°C

Increased variation in penetration depth after 20 hours

20 March 2017

CCR 2017

Pyrochlore Gd₂Zr₂O₇ after CMAS at 1200°C for 20 hours

Dense layer forms after reaction with CMAS

20 March 2017

Pyrochlore Gd₂Zr₂O₇ after CMAS at 1200°C for 40 hours

Gd-containing silicate Zr-rich cubic fluorite

Concentration							
#	Mg	AI	Si	Ca	Zr	Gd	
1	0	0	15	7	9	14	
2	0	0	15	6	11	20	
3	0	0	14	6	7	12	
4	0	0	2	2	33	5	
5	0	0	2	3	34	7	
6	0	0	2	2	29	5	

20 March 2017

Cubic Fluorite Gd₂Zr₂O₇ after CMAS at 1200°C for 5 hours

20 March 2017

Pyrochlore Gd₂Zr₂O₇ after CMAS at 1300°C for 20 hours

Cubic fluorite structure after reaction

> AUBURN UNIVERSITY

Pyrochlore Gd₂Zr₂O₇ after CMAS at 1300°C for 20 hours

Proportion of cubic fluorite higher near surface

Pyrochlore Gd₂Zr₂O₇ after CMAS for 20 hours

Cubic Fluorite Gd₂Zr₂O₇ after CMAS at 1200°C

UNIVERSITY SAMUEL GINN College of Engineering

AUBURN

Gd₂Zr₂O₇ Lattice Parameter Correction

Gd₂Zr₂O₇ Lattice Parameter

Cubic fluorite peak position not affected by original crystal structure

ZrO₂-Gd₂O₃ Phase Diagram

Gd / Zr in cubic fluorite increases with increasing temperature

T = tetragonal F = cubic fluorite M – monoclinic P = pyrochlore C, B, H = Gd_2O_3 phases

YSZ / Gd₂Zr₂O₇ coating exposure at 1200°C for 20 hours

CMAS

20 March 2017

YSZ / Gd₂Zr₂O₇ coating CMAS at 1200°C for 20 hours

EDS analysis (atomic%)							
Area	0	AI	Si	Ca	Zr	Gd	
1	71				29		
2	72			1	28		
3	73	2			24		
4	74	2			24		
5	72				28		
6	70	4	2	1	20	4	

20 March 2017

CCR 2017

YSZ / Gd₂Zr₂O₇ coating x-ray diffraction

CMAS Compositions

CMAS Composition								
Source		Percentage (mol%)						
	Oxide	CMAS	CaO-lean CMAS	CMAS / CaCO ₃	CMAS / CaSO ₄			
CMAS	CaO	33	20	17	17			
	MgO	9	11	9	9			
	AIO _{1.5}	13	16	13	13			
	SiO ₂	45	54	45	45			
CaCO ₃	CaO			17				
CaSO ₄	CaO				17			
Total CaO		33	20	33	33			

Surface after CMAS Exposure at 1300°C for 20 hours

Surface morphologies similar – larger crystals on sample with $CaCO_3$

20 March 2017

CCR 2017

Cross-Section after CMAS Exposure at 1300°C for 20 hours

Dense reaction layer – thickest for CaO-deficient composition

20 March 2017

CCR 2017

Gd₂Zr₂O₇ after CMAS at 1300°C for 20 hours – SEM / EDS

Elemental Distribution (mol%)

20 March 2017

CCR 2017

Gd₂Zr₂O₇ after CMAS at 1300°C for 20 hours – XRD

Gd₂Zr₂O₇ after CaO-lean CMAS at 1300°C for 20 hours – SEM / EDS

Elemental Distribution (mol%)

AUBURN UNIVERSITY

20 March 2017

CCR 2017

Gd₂Zr₂O₇ after CaO-lean CMAS at 1300°C for 20 hours – XRD

$Gd_2Zr_2O_7$ after CMAS / CaCO₃ at 1300°C for 20 hours – SEM / EDS

Elemental Distribution (mol%)

AUBURN UNIVERSITY

20 March 2017

CCR 2017

Gd₂Zr₂O₇ after CMAS / CaCO₃ at 1300°C for 20 hours – XRD

Gd₂Zr₂O₇ after CMAS / CaSO₄ at 1300°C for 20 hours – SEM / EDS

Elemental Distribution (mol%)

AUBURN UNIVERSITY

20 March 2017

CCR 2017

Gd₂Zr₂O₇ after CMAS / CaSO₄ at 1300°C for 20 hours – XRD

Effect of CMAS composition

CaO-lean reaction product

- Thickest reaction layer (311)_{CF} / (622)_{Pyr}
- Lowest Gd largest (311)_{CF}

Stress / Temperature Modeling

Uneven CMAS loading can lead to different reaction geometries

20 March 2017

Stress and Temperature Distributions

SAMUEL GINN College of Engineering

20 March 2017

Stress Concentration

Highest stress at CMAS / reaction layer interface

20 March 2017

CCR 2017

Conclusions

- Reaction product has higher thermal conductivity than lanthanide zirconate – higher conductivity material fills the pores
- Cubic fluorite and pyrochlore Gd₂Zr₂O₇ react similarly with CMAS
- More reaction with CaO-deficient CMAS

20 March 2017

CCR 2017