Vertically Aligned Carbon Nanotubes Embedded in Ceramic Matrices for Hot Electrode Applications

Yongfeng Lu

Laser Assisted Nano Engineering Lab Department of Electrical and Computer Engineering University of Nebraska-Lincoln Lincoln, Nebraska

Email: ylu2@unl.edu

http://lane.unl.edu

March 20th, 2017

Project Title

Project Title:	Vertically Aligned Carbon Nanotubes Embedded in Ceramic Matrices for Hot Electrode Applications
Grant Number:	DE-FE0023061
Project Investigator:	Yongfeng Lu
Recipient Organization:	University of Nebraska - Lincoln
Project Period:	10/01/2014 – 09/30/2017

Goal and Objectives

Primary goal: Develop carbon nanotubes-ceramic composite structures in which vertically aligned CNTs (VA-CNTs) are embedded in ceramic matrices for hot electrode applications in magnetohydrodynamics (MHD) power systems.

CNTs: $T_m > 1726 \ ^{\circ}C$ Oxidation resistance ~ 700 $\ ^{\circ}C$ $\sigma = 10^6 - 10^7 \ \text{S/m}$ $K = 200 - 30,000 \ \text{W/(m·K)}$

BN: $T_m > 2900 \degree C$ Oxidation resistance ~ 1500 $\degree C$ Insulator $K = 600 - 740 \ W/(m \cdot K)$

Cu: $T_m = 1084 \degree C$ Oxidation resistance < 200 °C $\sigma = 59.6 \times 10^6 \text{ S/m}$ K = 401 W/(m·K)

Goal and Objectives

Objectives:

- 1. Super growth of VACNT carpets
- 2. Fabrication of CNT-BN composite structures
- Stability and resistance studies of the CNT-BN composite structures
- 4. Thermionic emissions from the CNT-BN composite structures

Outline

1. Background and Motivations

2. Accomplishments

- 1) Measuring structure and electrical conductivity of the VACNTs
- 2) Growing VACNT patterns
- 3) Growing BN using the chemical vapor deposition method
- 4) Fabricating VACNT-BN structure and testing its oxidation stability
- 5) Fabricating VACNT-Al₂O₃ structure and testing its oxidation stability
- 6) Fabricating VACNT-GaN structure and testing its oxidation stability
- 7) Fabricating VACNT-GaN-Si structure and testing its oxidation stability
- 8) Fabricating VACNT-SiN_x infiltrated composite structure

3. Deliverables

- 4. Status and Future Work
- 5. Student Training

How are we going to satisfy future energy needs?

U.S. Electricity Generation (2010) Other Other renewable 6% renewables Liquid petroleum 2% Liquid 5% Hydroelectric 7% petroleum. 1% Nuclear 19% Nuclear Coal **Natural Gas** 19% 44% 27% Coal **Natural Gas** 39% 22% Hydroelectric 9%

Method	Efficiency (%)	References
Nuclear	33 – 36	Efficiency in Electricity Generation, EURELECTRIC
Coal	39 – 47	"Preservation of Resources" Working Group's
Natural gas	< 39	"Upstream" Sub-Group in collaboration with VGB, 2003
MHD	~ 65	http://www.mpoweruk.com/mhd_generator.htm

U.S. Electricity Generation (2013)

Principle of Magnetohydrodynamic Power Generation

Advantages:

- 1) Only working fluid is circulated without moving mechanical parts.
- 2) The ability to reach full power level almost directly.
- 3) Lower infrastructure cost than conventional generators.
- 4) A very high efficiency (60% for a closed cycle MHD).

Material Challenges for a MHD Generator

Requirement	Remarks		
Electrical conductivity (σ)	σ > 1 S/m, flux ≈ 1 amp/cm ²		
Thermal conductivity (k)	High heat flux from the combustion fluids at 2400 K		
Thermal stability	Melting point (T _m) above 2400 K		
Oxidation resistance	Resistant to an oxygen partial pressure about 10 ⁻² atm at 2400 K		
Corrosion resistance	Potassium seeds and aluminosilicate slags		
Erosion resistance	High velocity hot gases and particulates		
Thermionic emission	The anode and cathode should be good acceptor and emitters, respectively.		

Property	CNTs
Electrical conductivity (σ)	10 ⁶ – 10 ⁷
Thermal conductivity (<i>k</i>)	200 – 3000
Thermal stability	T _m > 1726 °C
Oxidation resistance	~ 700 °C
Corrosion resistance	Yes
Erosion resistance	Yes
Thermionic emission	Yes

Y. Won, Y. Gao et al., PNAS, 2013, 110(51), 20426-20430.

1000 × current density of copper
5 × electrical conductivity of copper
15 × thermal conductivity of copper
1/7 density of copper and ½ or Al

3,500 pounds of Cu and 147,000 pounds of AI in a Boeing 747

Property	BN
Electrical conductivity (σ)	Insulating
Thermal conductivity (<i>k</i>)	600 - 740
Thermal stability	T _m = 2973
Oxidation resistance	~ 1500 °C
Corrosion resistance	Yes
Erosion resistance	Yes
Thermionic emission	N.A.

http://www.graphene-info.com/3d-white-graphene-could-cool-electronics

	Graphene	h-BN
Space group	P ₆₃	P ₆₃
Lattice constant, <i>a</i> (Å)	2.46	2.50
Lattice constant, <i>c</i> (Å)	6.70	6.66
Thermal expansion coefficient (10 ⁻⁶ °C ⁻¹)	-1.5 ∥, 25⊥	-2.7 ∥, 38 [⊥]
Within the basel planes (II) on	d perpendicular to them (1)	

Within the basal planes (\parallel) and perpendicular to them (\perp)

It is feasible to insert BNNTs in CNTs, and vice verse.

http://www.nature.com/articles/srep01385

Proposed Solution: CNT-BN Composite Structures

- VACNTs: Electrical and thermal conductive channels.
- BN: Protective layer shielding CNTs from erosive and corrosive environments.

Property	BN	CNTs	
Melting point (°C / K)	2973 / 3246	> 1726 / 2000	
Chomical inorthose	Inert to acids but soluble in alkaline molten	Voo	
	salts and nitrides		
Oxidation resistance in open air (°C / K)	1500 / 1773	< 700 / 973	
Electrochemical passiveness	Yes. Used as electrode.	Yes.	
Electrical conductivity (S/m)	Insulating	10 ⁶ - 10 ⁷	
Thermal conductivity [W/(m·K)]	600 - 740	Up to 3000	

A review of previous research

3) Obtained VACNT-Cu structure

2) Obtained ultralong VACNTs up to 4 mm long

4) Established a LCVD system

- 1) Measuring structure and electrical conductivity of the VACNTs
- 2) Growing VACNT patterns
- 3) Growing BN using the chemical vapor deposition (CVD) method
- 4) Fabricating VACNT-BN structure and testing its oxidation stability
- 5) Fabricating VACNT-Al₂O₃ structure and testing its oxidation stability
- 6) Fabricating VACNT-GaN structure and testing its oxidation stability
- 7) Fabricating VACNT-GaN-Si structure and testing its oxidation stability
- 8) Fabricating VACNT-SiN_x infiltrated composite structure (in progress)

- Measuring structure and electrical conductivity of the VACNTs

Structure characterization

- Measuring structure and electrical conductivity of the VACNTs

Structure characterization

- Measuring structure and electrical conductivity of the VACNTs

Room-temperature electrical conductivity

• $3 \times 7 \times 5 \text{ mm}^3$ (H L W)

- Measuring structure and electrical conductivity of the VACNTs

Building a high-temperature electrical conductivity measurement system

- Measuring structure and electrical conductivity of the VACNTs

Building a high-temperature electrical conductivity measurement system

- Measuring structure and electrical conductivity of the VACNTs

High-temperature electrical conductivity of the VACNTs

- Growing VACNT patterns

Large VACNT patterns

- Growing VACNT patterns

Large VACNT patterns

SEM micrograph

- Growing VACNT patterns

Small VACNT patterns

- Growing VACNT patterns

Small VACNT patterns

SEM micrograph

2. Accomplishments - Growing VACNT patterns

Large and small VACNT patterns were obtained.

- Growing BN using thermal CVD method

Building a thermal CVD system for BN growth

- Growing BN using thermal CVD method

BN on Cu foil using thermal CVD

- Growing BN using thermal CVD method

BN on Cu foil using thermal CVD

- Growing BN using thermal CVD method

Structure characterization

AFM image

- Fabricating VACNT-BN structure

VACNT-BN patterns

- Fabricating VACNT-BN structure

Oxidation resistance test

- Fabricating VACNT-BN structure

Poor oxidation resistance properties of VACNT-BN patterns.

Growth of thick BN on VACNT patterns is a very challenging task.

- Comparison of properties of BN, Al₂O₃, SiO₂, GaN

Property	c-BN	h-BN	Al ₂ O ₃	Si/SiO ₂	GaN	Si ₃ N ₄
Bandgap (eV)	6.4	5.2	/	/	3.4	/
Melting point (°C)	2973 (sublimation)	2600 (decomposition)	2072	1713	2500	1900
Thermal conductivity (mW•cm ⁻¹ k ⁻¹)	740	600 ∥, 30 ⊥	300	120 ∥, 68 ⊥	1300	300
Lattice parameters (Å)	a = 2.5 c = 6.66	a = 3.6157	a = 4.785 c = 12.991	a = 4.9133 c = 5.4053	a = 4.526	a = 7.6165 c = 2.9109
Density (g/cm³)	3.45	2.1	3.95-4.1	2.648	6.15	3.2
Electron mobility (cm²/V·s)	< 200	< 200	1	/	< 500	/
Refractive index	2.17	1.8	1.768	1.544	2.29	2.016
Thermal expansion (10 ⁻⁶ /K)	1.2	-2.7 ∥, 38⊥	8.4	12.3 (quartz) 0.4 (fused silica)	a: 5.59	3.3

- Fabricating VACNT-Al₂O₃ structure

Fabricating VACNT-Al₂O₃ patterns using sputtering method

Target	Chamber pressure	Deposition time	Power	Atmosphere
AI_2O_3	5.5 mTorr	120 min	200 W	Argon (99.999%)

- Fabricating VACNT-Al₂O₃ structure

VACNT-Al₂O₃ patterns

Sample 1

- Fabricating VACNT-Al₂O₃ structure

Oxidation resistance test (Sample 1)

Before

<u>After</u>

- Fabricating VACNT-Al₂O₃ structure

Oxidation resistance test (Sample 2)

2. Accomplishments - Fabricating VACNT-Al₂O₃ structure

Poor oxidation resistance properties of VACNT-Al₂O₃ patterns.

Similar to BN, growth of thick AI_2O_3 on VACNT patterns is very challenging.

- Fabricating VACNT-GaN structure

Building a Laser-assisted MOCVD system for GaN growth

- Fabricating VACNT-GaN structure

Optimized parameters used for GaN growth

Parameters	Values
Laser power	100 W
Laser wavelength	9.201 µm
Growth temperature	900 °C
Growth time	5 min
Precursors	TMGa + N ₂ , NH ₃
NH ₃ flow rate	54 mmol/min
Carrier gas (flow rate)	N ₂ (88 μmol/min)
Chamber pressure	100 Torr
Direction	Laser was irradiated in backside of the sample

- Fabricating VACNT-GaN structure

Oxidation resistance properties of GaN

- Fabricating VACNT-GaN structure

VACNT-GaN patterns fabricated using LMOCVD method

- Fabricating VACNT-GaN structure

VACNT-GaN patterns fabricated using LMOCVD method

- Fabricating VACNT-GaN structure

Oxidation resistance test

- Fabricating VACNT-GaN structure

How to improve the oxidation resistance properties of VACNT-GaN patterns.

- Fabricating VACNT-GaN-Si structure

- Fabricating VACNT-GaN-Si structure

VACNT-GaN-Si patterns

- Fabricating VACNT-GaN-Si structure

VACNT-GaN-Si patterns

- Fabricating VACNT-GaN-Si structure

Oxidation resistance test

- Fabricating VACNT-GaN-Si structure

Oxidation resistance test

- Fabricating VACNT-GaN-Si structure

Time-dependent oxidation resistance at high temperature (1000 °C)

2. Accomplishments - Fabricating VACNT-GaN-Si structure

VACNT-GaN and VACNT-GaN-Si structures were obtained.

2. Accomplishments - Fabricating VACNT-GaN-Si structure

How to realize VACNT-ceramic infiltrated structure.

- Fabricating VACNT-ceramic infiltrated structure

Is it possible to realize VACNT-GaN-Si infiltrated structure ???

- Fabricating VACNT-ceramic infiltrated structure

Fabricating VACNT-Si₃N₄ infiltrated structure

- Fabricating VACNT-ceramic infiltrated structure

Vacuum thermal CVD system used for Si (Si₃N₄) deposition

Snorkels	Parameter	Value
Si ₂ H ₆ & NH ₃ lines	Precursor	Si ₂ H ₆ (10%)
Main	Carrier gas	N ₂ (90%)
chamber	Temperature	600 °C
Thermal Controller	Chamber pressure	1 Torr
MFCs Thormal	Heating rate	120 °C/min
stage	Growth time	30 min

- Fabricating VACNT-ceramic infiltrated structure

- Fabricating VACNT-ceramic infiltrated structure

- Fabricating VACNT-ceramic infiltrated structure

- Fabricating VACNT-ceramic infiltrated structure

VACNT-Si infiltrated structures were obtained.

- Fabricating VACNT-ceramic infiltrated structure

Oxidation resistance of VACNT-Si infiltrated structure

2. Accomplishments - Summary

- 1) Obtained large and small VACNT patterns
- 2) Obtained BN film on Cu foil
- 3) Obtained patterned VACNT-BN and VACNT-Al₂O₃ structures with poor oxidation stability
- 4) Obtained patterned VACNT-GaN-Si structure with good oxidation stability (1100 °C)
- 5) Obtained high-temperature electrical conductivity of the VACNTs
- 6) Obtained VACNT-Si infiltrated composite structure with high oxidation stability/electrical conductivity

3. Deliverables

1) Large and small VACNT patterns

3) VACNT-GaN and VACNT-GaN-Si structures

2) BN, VACNT-BN and VACNT-Al₂O₃ structures

4) VACNT-Si infiltrated composite structures

4. Future work

- Planned Activities in the Next-Phase

Tasks	Methods	Millstones	Planned Completion Date
Fabrication of CNT-Si ₃ N ₄ composite structures	Chemical vapor infiltration using a home-made thermal CVD system	Achieving CNT-Si ₃ N ₄ infiltrated composite structures	04/15/17
Stability studies of the CNT- Si ₃ N ₄ composite structures	High-temperature furnace and TGA	Thermal and oxidation stabilities: ≥ 1800 K	05/15/17
Electrical and thermal conductivity studies of the CNT-Si ₃ N ₄ composite structures	Home-made electrical conductivity measurement system (77 K to 1800 K)	Electrical conductivity: > 1 S/m; thermal conductivity: > 50 W/m·K	07/01/17
Thermionic emission current measurement of the CNT-Si ₃ N ₄ composite structures	Acetylene torch with tungsten electrodes in air.	CNT-Si ₃ N ₄ composite structures can be used as good emitters	09/30/17

5. Student Training

Student	Program	Training
Qiming Zou	PhD student	Under the support of this project, he was trained with all
Lydia Wemhoff	Undergrad student	required experiments and data analysis related to fabricating and characterizing patterned VACNTs, BN, GaN, VACNT-BN, VACNT-Al ₂ O ₃ , VACNT-GaN, VACNT-GaN-Si
Dawei Li	Postdoc researcher	composite structures.

Acknowledgements

We would like to express our heartfelt thankfulness for the Department of Energy and National Energy Technology Laboratory (Grant Number: DE-FE0023061) for the generous financial support.

Thank you!

