Predicting the Oxidation/Corrosion Performance of Structural Alloys in Supercritical CO₂ DE-FE0024120, P.O.P. 10/01/14-09/30/17

> Principle Investigator: John Shingledecker, Electric Power Research Institute 1300 West WT Harris Blvd. Charlotte, NC 28262 jshingledecker@epri.com

NETL 2017 Project Review Meeting for Crosscutting Research, Gasification Systems, and Rare Earth Elements Research Portfolios March 20, 2017 (Pittsburg, PA USA)

Vito Cedro, NETL Project Manager

Project Goals and Objectives

- Predict the oxidation/corrosion performance of structural alloys in high-temperature high-pressure sCO₂ via laboratory testing
- Combine laboratory corrosion data with computational modeling including unique attributes of sCO₂ heat exchangers to accomplish this goal

Materials for sCO₂ help enable US DOE program goals for Future Transformational Power Systems

Milestone Description	Completion Date
Task 1.0 - Updated Project Management Plan	10/29/2014
Task 1.0 - Kickoff Meeting	11/24/2014
Task 2.0 – Identify materials and impurities for supercritical CO ₂ testing and complete initial machining of samples	3/31/2015
Task 3.1 – Assemble corrosion test rig and conduct a 300 hour test at 650-700°C	5/11/2015
Task 3.2 – Complete tests to support final decision on CO ₂ composition for remaining testing	8/31/15
Task 3.3 – Complete 700C-1000 hour test	11/30/15
Task 3.3 – Complete 650C-1000 hour test	2/27/2016
Task 3.3 – Complete 750C-1000 hour test	5/10/2016
Task 3.5 – Complete long-term 5000-hour confirmatory testing	In Progress
Task 4.0 – Produce table of oxidation/corrosion rates in supercritical CO ₂	1/31/16
Task 5.0 Customize ORNL exfoliation model for current alloys and lab scale pin geometries	3/31/2016
Task 5.0 Complete exfoliation modeling for standard geometries and produce data for preliminary alloy selection	In progress

Outline

- Motivation for the Research
- Team Assembled, Plan, and Defining Test Conditions & Materials
- Experimental Approach
- Results and Ongoing Characterization
- Modeling Approach to Aid Alloy Selection
- Ongoing Research

Technology Challenges for sCO₂ Power Cycles: Heat Exchangers (HX)

- Expensive HX required: ~40% of plant cost
- Small, thin channels
- Large surface areas
- Materials considerations: thermal fatigue, creep (thin sections), brazing/diffusion bonding, corrosion/oxidation/carburization

Corrosion concerns:

- Closed cycle = build-up of impurities
- Open cycle = combustion products
- Long-term performance, pluggage, blockage, etc.

Horizontal Inlets Horizontal Outlet

Potential Oxidation/Corrosion Failure Modes: sCO2 Heat Exchangers (HX)

Note: Depends on HX Design (channel size, material thickness, materials of construction)

EPRI Suggested Sequence for Exfoliation of Ferritic Steels in Steam

- 1. Loss of flow channel area from scale formation
- 2. Depletion of chromium causing rapid acceleration of oxidation (Breakaway)
 - Consumption of Cr due to small reservoir of Cr in thin materials
 - Carburization reducing Cr near surface
- 3. Exfoliation causing channel blockage

Low P

High P

Low P

Project Team and Project Structure

- EPRI (Lead project, survey vendors, source materials, determine test conditions through cycle analysis, integrate experimental results, analyze data, perform limited characterization)
 - John Shingledecker (Principle Investigator)
 - David Thimsen
 - Steve Kung
 - Facilities: materials, machining, characterization
- DNV-GL (Testing and measurements)
 - Brett Tossey
 - Facilities: sCO₂ testing, corrosion measurements, materials characterization
- WrightHT (Comparisons with steam behavior, support modeling approaches)
 - Ian Wright
- Oak Ridge National Laboratory (Modeling)
 - Adrian Sabau

- Task 1.0 Project Management and Planning
- Task 2.0 Materials Selection, Production of Specimens, and Selection of Impurities in sCO2 Fluid
 - 2.1: Select Materials
 - 2.2: Produce Test Specimens
 - 2.3: Select Types & Concentrations of Impurities in the sCO2 Fluid
- Task 3.0 Laboratory Oxidation/Corrosion Testing and Analysis of Exposed Test Specimens
 - 3.1: Assemble & Shake-Down of sCO2 Oxidation/Corrosion Test Rig
 - 3.2: Evaluate Impurities in sCO2 Fluid
 - 3.3: Perform High Pressure Oxidation/Corrosion Tests
 - 3.4: Characterize and Analyze Exposed Test Specimens
 - 3.5: Perform Model Validation Tests
- Task 4.0 Evaluation of Oxidation Kinetics & Compare w/Steam
- Task 5.0 –Computational Model of Oxidation/Corrosion in sCO2
 - 5.1 Develop a Physical Properties Database
 - 5.2 Develop the Computational Model Framework
 - 5.3: Input Oxidation Kinetics and Perform an Isothermal Analysis
 - 5.4: Model Performance of Standard Heat Exchanger Geometries

Realistic sCO₂ conditions for semi-open Allam cycles

- Survey of industry and current studies
 - 700°C likely maximum temperature in heat-exchangers
- Evaluation of impurities for nearest-term 'open/direct-fired cycle' – Allam Cycle
 - H₂O, O₂, N₂, Ar, NO_x, SO_x, HCI
 - Mass-balance calculations for methane and cooled, raw syngas (checked against thermodynamic calculations)

	Composition (mol%)		
Species	Methane	Cooled raw coal syngas	Oxygen
CH₄	100	1.0	
CO		39.0	
H ₂		28.3	
CO ₂		8.0	
H₂O		20.0	
N ₂ +Ar		2.0	0.5
H2S		0.9	
HCI		0.02	
02			99.5
LHV	912 BTU/scf	218 BTU/scf	

Component	Composition (mol%)			
Fuel	Methane		Cooled Raw Coal Syngas	
Stroom	Combustor	Turbine	Combustor	Turbine
Stream	Inlet	Inlet	inlet	Inlet
CO ₂	95	90	90	85
H ₂ O	250 ppm	5	250 ppm	5
N ₂ +Ar	1	1	9	9
0 ₂	4	4	1	1
HCI				20 ppm
SO ₂	1,000 ppm			
$3.6 \text{ vol}\%, H_2O = 5.3 \text{ vol}\%$				

 $O_{2} =$

Scope of Laboratory sCO₂ Corrosion Tests

- Conditions
 - 650-750°C, 200 bar
 - $-sCO_2$
 - Commercially pure CO₂
 - Simulated open cycle with impurities (O₂ + H₂O) from NG

Exposures

- 300 hours (Gr 91, 304H, 740H), 700°C
- 1,000 hours (all 7 alloys), 650, 700, and 750°C
- 5,000 hours (all 7 alloys + component samples), 700°C

Material Class	Alloys Selected		
Ferritic	Gr. 91	VM12	Crofer22H
steels	(8-9Cr)	(11-12Cr)	(22Cr)
Austenitic	304H	HR3C	
stainless	(18Cr)	(25Cr)	
Nickel-based	617 (20Cr, solid sol'n)	740H (25Cr, ppt. strengthened)	

- Materials of interest
 - Commercially available
 - Code approved or Industrially relevant
 - Focus on economics

Outline

- Motivation for the Research
- Team Assembled, Plan, and Defining Test Conditions & Materials
- Experimental Approach
- Results and Ongoing Characterization
- Modeling Approach to Aid Alloy Selection
- Ongoing Research

Laboratory Testing Facility (DNV-GL)

- High temperature and pressure (600-750°C, 200 bar)
- Existing test facility modified for sCO₂ with safety features
- Capable of introducing impurities (O₂, H₂O)
- Shake-down (300hr) tests with Gr. 91, 304, and 740H showed similar mass gains to other studies for pure sCO₂

Gas Volume: 4.41 liters

Refresh Rate: static, with occasional replenishment

Temperatures: preheat at 454°C. exit at 149°C

Large volume compared to sample area

Solubility of H2O in sCO2 at ~130°C = 0.5: up to 50% reduction in H2O on samples

Shake-Down Tests and Comparison of mass gain in sCO₂ and steam

- Mass gain results from 300-hour tests at 700°C and 200 bar are similar to those in steam and sCO₂ from other studies
- However, mass gain is not useful for evaluating oxide morphology and propensity for exfoliation

Sample	Sample	Weight gain		
ID	#	mg	mg/cm ²	
T91	1	124.57	7.66	
	2	143.47	8.82	
	3	124.17	7.63	
TP304H	1	4.53	0.28	
	2	2.77	0.17	
	3	3.97	0.24	
740	1	3.13	0.19	
	2	3.47	0.21	
	3	3.80	0.23	

Mass gain data from current project are consistent with assembled literature steam data

Oxide Morphology of Grade 91 after 300 hour test in pure CO₂ at 200 bar, 700°C

- Overall multi-layered scale structure, but
- 'Intermediate layers' present between expected L1 & L2
 - 'Outer' intermediate layer contains Cr (level lower than in L1)
 - The intermediate layers not found on other alloys tested

Gr 91 suggesting carburization after only 300 hours in pure sCO₂ at 200 bar and 700°C

- Decoration of etched Gr 91 microstructure
- Initial spot hardness measurements for carburization inconclusive
- More detailed characterization performed

Hardness Profiles on Gr 91 after 300 hour test in pure and impure sCO₂ at 200 bar and 700°C

ELECTRIC POWER

EPCI

Outline

- Motivation for the Research
- Team Assembled, Plan, and Defining Test Conditions & Materials
- Experimental Approach
- Results and Ongoing Characterization
- Modeling Approach to Aid Alloy Selection
- Ongoing Research

Test Matrix Progress

Description (Purpose)	Conditions	Test Status	Characterization	
Rig Commissioning	Temperature monitoring & pressure	Complete	100%	
Short-term	700°C-300hr-Pure	Complete	100%	
(compare to literature, impurity introduction)	700°C-300hr-Impure	Complete	100%	
Test Program (develop oxide thickness kinetics and propensity for exfoliation)	700°C-1,000hr-Impure	Complete	Mass gains and	
	650°C-1,000hr-Impure	Complete	thickness complete, final SEM analysis	
	750°C-1,000hr-Impure	Complete		
Long-Term (Validate Models and test unique geometries)700°C-5,000hr-Impure Includes actual commercial HX components from OEMs		1,000hr Complete 3,500hr Complete 5,000 hr Ongoing(April)	Started	

-2.00

Time (Hour)

ELECTRIC POWER

RESEARCH INSTITUTE

Comparison of scale morphology for Grade 91 and 304H 1,000 hours in impure sCO_2 (3.6% O_2 , 5.3% H_2O) at 200 bar and 700°C

Comparison of scale morphology for Grade 91 and 304H 1,000 hours in impure sCO₂ (3.6% O₂, 5.3% H₂O) at 200 bar and 700°C

Grade 91

Comparison of scale morphology for Grade 91 and 304H 1,000 hours in impure sCO_2 (3.6% O_2 , 5.3% H_2O) at 200 bar and 700°C

Comparison of scale thickness for Grade 91 and 304H 1,000 hours in impure sCO₂ (3.6% O₂, 5.3% H₂O) at 200 bar and 700°C

- Statistical measurements of thickness (Optical and/or SEM)
- Differences in inner (L1) and outer oxide (L2) thickness

Comparison of scale morphology for ferritics and 304H 1,000 hours in impure sCO₂ (3.6% O₂, 5.3% H₂O) at 200 bar and 700°C

EDS Fe-Cr or Fe-Cr-O Maps Overlayed on SEM Images

VM12 (11.2%Cr)

Crofer 22H (22.7%Cr)

- Outer oxides are Fe-based
 - Gr. 91 continued to show intermediate layer(s) with Cr & Fe striations after 1000 hours
 - With exception of Gr. 91, oxide morphologies appear similar to those in steam
- No exfoliation observed, but
 - outer Fe-oxide (L2) growing on all alloys suggests eventual exfoliation
 - Voids already forming on L1/L2 interfaces on ferritic alloys--these are typical locations for scale failure

304 Stainless Steel: 18.4%Cr-18.1%Ni

Comparison of Total Oxide Thicknesses

1,000-hour test in impure sCO₂ (3.6% O₂, 5.3% H₂O) at 200 bar

- Inner, Outer, and Total Oxide thickness measured
- Lower Cr alloys show more variation in thickness
- HR3C and Nickel-based could not be measured optically

Comparison of scale thickness for ferritics and 304H

1,000-hour test in impure sCO₂ (3.6% O₂, 5.3% H₂O) at 200 bar. 700°C

- All ferritic alloys form duplex scale structure at 700°C, even with ~23%Cr
- No exfoliation observed (yet)
 - EPRI models for steam predict exfoliation from Gr.91 at 200 to 400 microns total oxide thickness

Hardness on Gr 91, VM12 and 304H after 1000-hour test in impure sCO_2 (3.6% O_2 , 5.3% H_2O) at 200 bar and 700°C

- Ferritic Gr 91 and VM12 exhibit increased hardness near surface
- Hardness in 304H stainless steel flattens out after 1000 hours
- Ni-base alloys show no sign of carburization

Hardness on HR3C after 1000-hour test in impure sCO_2 (3.6% O_2 , 5.3% H_2O) at 200 bar and 700°C

Carburization suggested in HR3C (25Cr-20Ni) despite low mass gain

- Likely due to high Cr content (relatively to Ni content) for carbide formation
- More microstructural investigations planned

Long-term tests: Characterization Ongoing

Unit weight gains of alloys after exposure to impure sCO_2 containing 3.6 vol.% O_2 and 5.3 vol.% H_2O at 700°C (in mg/cm²)

Alloy Name	1000 Hours *	1,000 hours	3,500 hours	5,000 hours
Gr 91	9.34	8.86	13.94	
VM 12	2.51	3.36	7.20	
Crofer 22	2.16	1.88	3.52	
304H	0.96	0.78	1.66	
HR3C	0.16	0.07	0.15	
740H	0.05	0.05	0.02	
617	0	0	0	

*Data extracted from the previous 1000-hour test in impure sCO₂

Ongoing Characterization: Subcomponents

Inconel 625: 3,500hrs Impure sCO2 Exposure

 Subcomponent Materials in Test: 625, 230, 304/304L, 347H, FeCrAI

Outline

- Motivation for the Research
- Team Assembled, Plan, and Defining Test Conditions & Materials
- Experimental Approach
- Results and Ongoing Characterization
- Modeling Approach to Aid Alloy Selection
- Ongoing Research

Current Modeling Research

Evaluation of Failure Criteria for Standard Boiler Superheater

Temperature, °C

Results show #1 Concern is Exfoliation

-Cr depletion is not a concern

- Carburization not considered

³⁰ - Reduction in Flow Area (RFA) is low

Differences of sCO2 HX compared to Boiler Tubes

Fluid/Size/Property	sCO ₂ channels	Steam tubes	
Channel shape	Variable curvature	Circular	
Oxide growth location	Inside channel	Inside channel	
	(concave)	(concave)	
	Outside channel		
	(convex)		
Metal thickness [mm]	0.2	7 to 10	
Internal Hydraulic Diameter	*0.2 to 0.4	20 to 30	
[mm]			
Channel length [mm]	500 to 1,000	20,000 to 25,000	
Ratio channel length to ID	1,200 to 5,000	600 to 1,200	
radius			
Number of 90° or 180° bends	**none	1	
per channel			
Location of possible blockage	Tube exit	bends	
Shape of blockage	Horizontal,or	Horizontal, or	
	in the bend at channel	Inclined in bends	
	exit		

*ID radius of curvature 0.2 to 0.6 [mm] **Bend at channel exit in the current design

© 2017 Electric Power Research Institute, Inc. All rights reserved.

Summary

- First project to address oxidation in open sCO₂ Allam cycle
 - Impurity concentrations have been determined via mass balance and thermodynamic calculations
- A new test rig assembled, and 300- and 1000-hour laboratory tests with and without impurities completed
 - 1,000-hour tests were performed at 200 bar and 650, 700, and 750°C
 - 5000-hour test in progress at 700°C and 200 bar
- Although mass gains for alloys in sCO₂ and steam appear similar, some differences in scale morphology on Gr.91
- Carburization appears more severe in pure sCO₂ than impure conditions (short-term)
- Both ferritic and austenitic stainless steels appear susceptible to carburization
- Nickel-base alloys did not suffer carburization (after 1000 hours)
- Effect of sCO₂ and geometry on oxidation to be evaluated through modeling

Next Steps

- Complete 5,000 hours exposures
- Scale thickness kinetic equations and comparisons to steam for modeling
- Evaluation of subcomponent geometries
- Evaluation of carburization (additional methods to verify hardness approach) and microstructures
 - GD-OES on a few selected samples
- Comparison of different failure modes for each material
 Final report
- Follow-on work (potential): introduce additional impurities for transformational fossil-fired systems (Sulfur, etc.)

Together...Shaping the Future of Electricity

Back-Up: H2O in sCO2

Figure 3.2.1 - OLI model results showing the solubility of 5.3 vol.% water in impure sCO_2 containing 3.6 vol.% oxygen.

Figure 3.2.2 - Modelling results and experimental results reported by R.D. Springer et al. [1] for the solubility of water in supercritical carbon dioxide at 150 and 120 degrees Celsius.

Figure 3.2.3 - Modeling and experimental results summarized by R.D. Springer, et. al. [1] for the solubility of water in sCO₂ at

different temperatures.

Statistical Box Plot: 700C Impure Tests

- Inner, Outer, and Total Oxide Thickness
- Box and wisker plot

Hardness on 304H and 740H after 300-hour test in impure sCO_2 (3.6% O_2 , 5.3% H_2O) at 200 bar and 700°C

740H exhibits good resistance to carburization in sCO₂

