Attrition Evaluation of Oxygen-Carriers in Chemical Looping Systems
Srivats Srinivasachar and Teagan Nelson
Envergex LLC

Johannes Van der Waat, Harry Feilen, Daniel Laudal, Michael Mann, and Steven Benson
Institute for Energy Studies, University of North Dakota

Background - CO₂ Capture
- Chemical-Looping-Combustion (CLC) is an innovative power generation technology for carbon capture at a lower cost and higher efficiency than state-of-the-art
 - Near-pure CO₂ stream produced without using oxygen from air separation
 - Solid oxygen-carrier (OC) used to provide oxygen to fuel
 - Oxygen-depleted solids regenerated separately in air
 - Solid oxygen carriers undergo attrition and loss of reactivity over time
 - Loss due to attrition and loss of reactivity creates significant operating cost burden

Project Objectives and Approach Methodology
- Objectives
 - Address critical element of CLC - loss of OC due to attrition/reactivity degradation
 - Evaluate attrition characteristics of oxygen carrier materials under high temperature, reacting conditions to establish correlations between process parameters
- Methodology
 - Basis - existing standard, (ASTM D5757), used for determining attrition characteristics of powdered catalysts by air jets
 - Incorporate modifications to attain test protocol more representative of chemical looping process conditions

Evaluation Strategy
- Evaluated multiple oxygen carriers at baseline conditions
- Ilmenite (2), Hematite, Red Mud, CaSO₄-based, MnOₓ-ore, Engineered iron oxide
- Cyclic operation between reduction and oxidation conditions
- Measured reduction/oxidation gas concentrations at reactor outlet
- Measure attrition rate by collecting and weighing attrited material
- Examine the effects of varying jet velocities on the attrition of the oxygen-carriers
- Evaluate use of coal as fuel for reduction step on performance of selected oxygen carriers

Experimental Setup

Results - Evaluation Tests
- Ilmenite and Calcium-Based oxygen carriers had lowest attrition rates.
- Iron-Based-Engineered oxygen carrier had highest rate of attrition.
- Hematite displayed a significant breakage event during testing; thereafter attrition rate decreased.
- Red Mud and Mn-Oxide-Based materials exhibited attrition rates that were slightly increasing or relatively stable over entire test period.
Manufacturing (Sintering) at higher temperature caused a decrease in reactivity.

Degree of reduction affected attrition and reactivity performance:
- Increasing CO/H₂ concentration resulted in better fuel utilization indicating higher reduced state of OC.
- Increasing CO/H₂ concentration caused agglomeration (20% - 30% concentration).
- Degree of reduction critically important.

Results – Effect of Gas Composition on OC Performance

- Fe-based carrier under coal injection

Results – OC Performance with Solid Fuel Combustion

- Fe-based carrier under coal injection

Future Work

- Effect of operating parameters on attrition and reactivity will be characterized to develop knowledge database and formulate strategies for commercial test service offerings.
- Expansion of work to study effect of cyclonic/impaction conditions on attrition and reactivity characteristics of Oxygen Carriers.

Acknowledgements

Project Manager: John M. Rockey, DOE STTR; DE-SC0011984

Contact Details

Srvats Srinivasachar, Envergex LLC
Phone: (508) 347-2933; Mobile: (508) 479-3784; E-mail: srvats.srinivasachar@envergex.com