Minimizing Solvent Oxidation With NO₂ Prescrubbing

A. Sexton, D. Sachde, A. Vance, K. Fisher – Trimeric Corporation
Andrew Sexton@trimeric.com, www.trimeric.com
J. Selinger, K. Fischer, G. Rochelle – The University of Texas at Austin

OBJECTIVES
- DOE SBIR FY16 Phase I Release 2: Carbon Capture System Improvements
 - Aerosols, Reclamation, Oxidation
- Amine-based solvents = Ready for Deployment
- Flue gas contaminants oxidize amines († costs)
- Operating costs – amine replacement, waste disposal
- Capital costs – solvent reclaiming
- Integrate NOₓ and SO₂ removal
- No additional capital costs
- Modify chemistry for existing equipment

SOLVENT OXIDATION REACTIONS
R₃NH + NO₂ → HNO₂ + R₃N*
R₃N* + NO → R₃NNO₂ (nitroamine)

1. Thiosulfate addition inhibits sulfite oxidation
2. Sulfite reacts with inlet NO₂

SULFITE OXIDATION INHIBITION AND REACTION
NO₂ + SO₃²⁻ → NO₃⁻ + SO₄²⁻
SO₃²⁻ + O₂ → SO₄²⁻
SO₃²⁻ + S₂O₃²⁻ → SO₄²⁻ + S₂O₅²⁻
2SO₂⁻ → SO₄²⁻

BENCH SCALE TEST PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂ Concentration</td>
<td>ppmv</td>
<td>0.5</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>22-55</td>
</tr>
<tr>
<td>Thiosulfate Concentration</td>
<td>mmol/kg</td>
<td>4-50</td>
</tr>
<tr>
<td>Tertiary Amine Concentration</td>
<td>mmol/kg</td>
<td>3-200</td>
</tr>
<tr>
<td>Metal Concentration</td>
<td>mmol/kg</td>
<td>0.1-0.5</td>
</tr>
<tr>
<td>EDTA Concentration</td>
<td>mmol/kg</td>
<td>0.02-1</td>
</tr>
</tbody>
</table>

EXAMPLE TEST RESULTS

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Concentration (mmol/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
</tr>
</tbody>
</table>

ESTIMATED ECONOMICS

BASELINE CHEMISTRY

ADVANCED ADDITIVES
- Lower cost
- More effective oxidation inhibitor

TYPICAL PRE-TREATMENT FOR AMINE POST-COMBUSTION CAPTURE SYSTEM

Chemical Additives: Dual Removal of SO₂ / NO₂

SO₂ < 40 ppmv
NO₂ < 5 ppmv

SO₂ ≤ 1 ppmv
NO₂ < 1 ppmv

Flue gas to Atmosphere

CO₂ Lean Solvent

CO₂-Rich Solvent

CO₂ Absorber

Direct Contact Condenser

Gas Phase: NO₂

Liquid Phase: Sulfite Concentration

NCC Pilot Test Results

Additive Concentrations

NO₂ Removal versus pH

NO₂ Removal versus Additive Concentration

SUMMARY
- Validated concept at bench and pilot scales
- Identified novel inhibitors
- Stronger oxidation inhibition
- Lower cost
- No new unit operations required
- Utilizes existing equipment
- Potential net savings > $1/MT CO₂ captured

ACKNOWLEDGEMENTS / SPECIAL THANKS
National Carbon Capture Center
Justin Anthony, John Carroll
U.S. Department of Energy
Project Manager: Bruce Lani

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Award Number DE-SC0015890.

DISCLAIMER

(This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of its employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.)