FE0027654: 10MW_e Coal Direct Chemical Looping Large Pilot Plant: Pre-Front End Engineering and Design Study

Andrew Tong
Luis Velazquez-Vargas, Thomas Flynn, Christopher Poling, L.-S. Fan
Research Assistant Professor
Department of Chemical and Biomolecular Engineering
THE OHIO STATE UNIVERSITY

NETL CO₂ Capture Technology Project Review Meeting | 25 August 2017
OSU Chemical Looping Evolution

Laboratory Studies
- Reduction Kinetics and Mechanism
 - Oxygen Carrier Reactivity (TGA)
 - Fixed Bed
 - TGA

Bench Testing
- Moving Bed Model and Results
 - 2.5 kW\textsubscript{th} Reducer

Sub-Pilot Testing
- Integrated Design
- Reduce Gas Profile
- Sulfur Balance
 - 25 kW\textsubscript{th} CDCL Unit

Pilot Plant Demonstration
- 250 kW\textsubscript{th} CDCL Unit

1993 to 2013 to present
Oxygen Carrier Development

4Fe (s) + 3O₂ (g) → 2Fe₂O₃ (s)
Fe₂O₃ (s) + 3H₂ (g) → 2Fe (s) + 3H₂O (g)

If the cyclic reactions proceed through Fe cation diffusion, core-shell structure forms, e.g. Fe₂O₃ + Al₂O₃.

If the cyclic reactions proceed through O anion diffusion, core-shell structure does not forms, e.g. Fe₂O₃ + TiO₂.

*Al₂O₃ is only a physical support, while TiO₂ alters the solid-phase ionic diffusion mechanism.
Main reactions:
Reducer: Coal + Fe$_2$O$_3$ \rightarrow Fe/FeO + CO$_2$ + H$_2$O
Oxidizer: Air + Fe/FeO \rightarrow Fe$_2$O$_3$ + Spent Air
Overall: Coal + Air \rightarrow CO$_2$ + H$_2$O + Spent Air

Reducer Reactor Design

OSU Coal Direct Chemical Looping Process

Fixed solid molar flowrate n_{Fe}

Oxygen content for solid $y = \frac{3n_{H_2O} + 4n_{H_2O} + n_{FeO}}{n_{Fe}}$

Fixed gas molar flowrate $n_{H_2} + n_{H_2O}$

Oxygen content for gas $x = \frac{n_{H_2O}}{n_{H_2} + n_{H_2O}}$

Oxygen Balance

$n_{Fe}(y_{2+\Delta z} - y_2) = (n_{H_2} + n_{H_2O})(x_{2+\Delta z} - x_2)$

$\Delta z \rightarrow 0 \Rightarrow \frac{dy}{dx} = \frac{(n_{H_2} + n_{H_2O})}{n_{Fe}}$

Top Section

- C$_x$H$_y$ + Fe$_2$O$_3$ \rightarrow Fe/FeO + CO$_2$/H$_2$O
- CO + Fe$_2$O$_3$ \rightarrow Fe/FeO + CO$_2$
- H$_2$ + Fe$_2$O$_3$ \rightarrow Fe/FeO + H$_2$O

Coal Volatilization

- Coal \rightarrow C + C$_x$H$_y$ (Volatiles)

Bottom Section

- C + CO$_2$ \rightarrow 2 CO
- 2 CO + Fe$_2$O$_3$ \rightarrow Fe + FeO + 2 CO

* Reactions not balanced
CDCL Process Analysis

Process Flow Diagram

550 MWₑ CDCL Plant Conceptual Design

Construct 250 kWₑ Test Unit

<table>
<thead>
<tr>
<th></th>
<th>Base Plant</th>
<th>MEA Plant</th>
<th>CDCL Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Feed, kg/h</td>
<td>185,759</td>
<td>256,652</td>
<td>205,358</td>
</tr>
<tr>
<td>CO₂ Capture Efficiency, %</td>
<td>0</td>
<td>90</td>
<td>96.5</td>
</tr>
<tr>
<td>Net Power Output, MWₑ</td>
<td>550</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td>Net Plant HHV Efficiency, %</td>
<td>39.3</td>
<td>28.5</td>
<td>35.6</td>
</tr>
<tr>
<td>Cost of Electricity, $/MWh</td>
<td>80.96</td>
<td>132.56</td>
<td>102.67</td>
</tr>
<tr>
<td>Increase in Cost of Electricity, %</td>
<td>-</td>
<td>63.7</td>
<td>26.8</td>
</tr>
</tbody>
</table>
250 kW\textsubscript{th} CDCL Pilot Test Unit

Combustor Temperature with Natural Gas Heating

- **Combustor Temperature**
- **Total NG Flow into Combustor**
- **Burner NG Flow**
- **Windbox NG Flow**
- **Burner Natural Gas, lb/hr**
- **Combusor Natural Gas, lb/hr**
- **Total Natural Gas, lb/hr**

![Combustor image](image-url)
Project Objective

- Perform the (pre-) Front end Engineering Design (FEED) of a modular 10 MW$_e$ coal-direct chemical looping (CDCL) large pilot plant.
- Provide Functional specifications for integration with host site.
- Provide risk assessment, schedule and cost estimate for fabrication, construction and testing.
- Update design and commercial 550 MW$_e$ CDCL plant economic analysis
Project Objective and Schedule

- Objective: Completed a site specific design of a 10 MW_e large pilot CDCL test unit with >90% CO₂ capture
- 3 Major task to complete project
 - Task 2: Continued operation of 250 kW_th pilot test unit and 10 MW_e cold flow model studies
 - Coal/Fe ratio optimization, site specific coal studies, etc.
 - CFM studies on coal/reducing gas distribution and combustor fluidization performance
 - Task 3: 10 MW_e Unit Design and Costing
 - Host site selected
 - Oxygen carrier synthesis process costing
 - Detailed reactor sizing, HMB, HAZOP review, etc.
 - Task 4: Refine TEA models base on project results

Project Team

<table>
<thead>
<tr>
<th>OSU/B&W</th>
<th>Lead and manage overall project activities Task 1 and conduct research, design and Engineering studies in Task 2, 3 and 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Skies Consulting</td>
<td>Task 3 & 4: Coordinate IRC meetings \</td>
</tr>
<tr>
<td>EPRI</td>
<td>Task 4: TEA review and Balance of Plant Support</td>
</tr>
<tr>
<td>Johnson Matthey</td>
<td>Task 3: Develop OC manufacturing techniques</td>
</tr>
<tr>
<td>PSRI</td>
<td>Task 2: Perform cold flow model experiment</td>
</tr>
<tr>
<td>Dover</td>
<td>Task 3: Test site selection</td>
</tr>
<tr>
<td>Nexant</td>
<td>Task 4: TEA review</td>
</tr>
</tbody>
</table>
Task 3.6: Oxygen Carrier Commercial Manufacturing Development

Phase I
- Verification of reactivity with TGA
- Strength and attrition analysis with Jet-Cup

Phase II
- Incorporation of natural ilmenite
- Raw material size optimization
- Shape factor optimization

Phase III
- JM cost-model analysis
- First estimate of ITCMO production cost

Johnson Matthey
• First round of samples have been received and characterized
• One sample achieved target conversion (33%) with stable strength after 200 cycles (64 MPa)
• Next steps:
 • Optimize sphericity of oxygen carrier
 • Use of natural ore ilmenite as raw material
 • Attrition resistance measurement with Jet-cup

<table>
<thead>
<tr>
<th>Sample #160317/1&2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
</tr>
<tr>
<td>Average Diameter</td>
</tr>
<tr>
<td>Crushing Strength</td>
</tr>
<tr>
<td>Conversion (%)</td>
</tr>
</tbody>
</table>
Concluding Remarks

• CDCL process represents an advanced, next generation oxy-combustion technology capable of high process efficiency for electricity production with >95% carbon capture

• Project objective is to complete a Preliminary FEED study of the CDCL 10MW_e large-pilot facility incorporating a modular reactor design

• Small pilot scale testing ongoing with promising initial results

• Oxygen carrier synthesis assessment initiated with initial sample production from Johnson Matthey showing good performance. OSU sample characterization studies ongoing.
Acknowledgements

Government Agency
- DOE/NETL: John Rockey
- Ohio Development Services Agency: Greg Payne

Project Participants
- Electric Power Research Institute
- Particle Solids Research Incorporated
- Dover Light & Power
- Johnson Matthey
- Clear Skies Consulting
- Nexant
- Industrial Review Committee
 - AEP
 - First Energy
 - Dayton Power & Light
 - Ohio EPA
 - CONSOL Energy
 - Public Utility Commission of Ohio

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibilities for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of United States Government or any thereof.