Robust and Energy Efficient Dual Stage Membrane Based Process for Enhanced CO₂ Recovery

DE-FE0013064

Dr. Richard J. Ciora, Jr, Media and Process Technology Inc.

•Dr. Paul KT Liu, Media and Process Technology Inc., Pittsburgh, PA
•Professor Theo T. Tsotsis, University of Southern California, Los Angeles, CA
•Dr. Eric C. Wagner, TechnipFMC plc., Morovia, CA

U.S. Department of Energy National Energy Technology Laboratory Strategic Center for Coal's FY15 Carbon Capture Peer Review March 16-20, 2015

M&P Dual Stage Membrane Process

Project Overview

<u>Overall Theme:</u>

- Use inorganic membrane technology advantages to achieve CCS goals.
- Move inorganic membrane technology from lab scale novelty to commercial reality.

Overall Project Objectives:

- 1. Demonstrate the carbon molecular sieve membrane as a bulk H_2 separator and to improve the efficiency of the WGS reactor
- 2. Demonstrate the Pd-alloy membrane for residual H_2 recovery from "captured" high pressure CO_2
- 3. Perform bench scale testing (equivalent to a syngas throughput for 0.01MWe power generator) of the innovative pre-combustion process scheme for power generation with CO_2 capture and sequestration (CCS).
- 4. Key process components will be tested under simulated and real gasifier syngas conditions for their potential to effectively separate H_2 and CO_2 .
- 5. Collected data will be utilized to assess the potential of the concept for achieving the DOE Carbon Capture Program goal.

M&P Dual Stage Membrane Process

Project Overview

Funding: Overall project budget: \$2.5MM including \$500,000 (20%) cost share

Overall Project Performance Dates: October 1, 2013 - September 30, 2016

Project Participants:

- Media and Process Technology...Membrane manufacturer/supplier and technology developer
- University of Southern California...Membrane reactor testing, membrane model development
- **Function FMC**...Engineering and system design, analysis and economics

APPROACH

Dual Stage Membrane Process Scheme and Key Components

TECHNOLOGY BACKGROUND

Multiple Tube Membrane Bundles – versatile, low cost

#1: Packaging individual membrane tubes into commercially viable modules for field use.

Specific thin film deposition for advanced separations

TECHNOLOGY BACKGROUND

Membrane Bundles for Separations at High Temperature and Pressure

Multiple Tube Bundle Styles

CMS Membrane

Dense Ceramic Tube Sheet (DCT-style) Performance: >500°C; >1,000 psig Packing: 57-tube current and 71-prototypes, spaced pack

Dense alumina "tips" for Candlefilter **Potted Ceramic Glass (PCG-style)** Performance: ~300°C; <450 psig Packing: 86-tube, close pack

Pd-alloy Membrane

TECHNOLOGY/PROCESS ADVANTAGES

Dual Stage Membrane Process: Advantages over SOTA

Our Innovation

- <u>CMS membrane</u> to enhance CO conversion efficiency with concomitant bulk H₂ recovery to improve power generation efficiency.
- <u>*Pd-alloy membrane for residual H*₂ *recovery* during the post compression of CO_2 for CCS to achieve the CO_2 capture goals and fuel efficiency requirements.</u>

Unique Advantages

- *No syngas pretreatment required*. CMS membrane is stable in all of the gas contaminants associated with coal derived syngas.
- *Improved CO conversion efficiency and bulk* H_2 *separation*. Separation of hydrogen as well as enhanced CO conversion from the raw syngas occurs at elevated temperatures at reduced steam requirement for the WGS reaction.
- *Reduced Gas Load to CGCU:* The proposed use of the CMS membrane with the WGS reactor results in substantial hydrogen and steam recovery, resulting in reduced stream size for the CGCU.
- *CCS Post Compression Power Reduction*: CO₂-enriched gas is delivered to the CGCU at relatively high pressure reducing total compression load.
- Enhanced residual H_2 recovery from the CCS stream to achieve the CO_2 recovery goals. The Pd-alloy membrane is ideally suited to remove residual H_2 from the CCS stream to deliver the CO_2 purity and capture targets.

CHALLENGES

Dual Stage Membrane Process: Advantages over SOTA (cont.)

Our Solutions to the Well-known Deficiencies of a Membrane Process

- *Bulk Separation Limitation*... Membranes are generally intended for bulk separation, usually not very efficient for fine separations. Our use of very high selectivity Pd-alloy membranes to supplement CMSM overcomes this deficiency to achieve the program goals.
- *High Cost of Pd Membranes*... Pd-based membranes are expensive and the worldwide supply is constrained considering commercially available technology. Our ceramic substrate and bundle designs permit thin films to overcome both of these problems.
- *Pd Membrane Stability*...The Pd-based membranes in this application is exposed to a H_2/CO_2 stream after CGCU. Thus, chemical stability of the membrane is not an issue.

Progress to Date on Key Technical Challenges

BP1 and BP2 Accomplishments

BP1 Tasks Completed to Overcome Key Technical Challenges

- CMS/Pd membrane operation meeting targets for CO₂ sequestration and cost.
- Long term and other membrane performance stability
- Full-scale WGS-MR and membrane separator designs for mega-scale applications
- Updated membrane and membrane reactor modeling

BP2 Tasks Underway/Completed to Overcome Key Technical Challenges

- *• Performance stability in actual gas testing (NCCC) with multiple tube bundles.*
- Model verification in actual gas testing with multiple tube bundles.
- Long term membrane performance stability.
- ✓ Process design and techno-economic evaluation.
- Environmental, health and safety assessment.

Progress and Current Status of Project

Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 - 1678

PROGRESS: CMS Membranes

Typical Performance and Performance Targets

CMS Single Tube Characterization

CMS Membrane Characteristic	Preliminary Target to Achieve DOE Goals ¹	Laboratory Single Tubes Performance
Permeance, H ₂ [GPU] @ 250°C, 20 psig	550	420 to 1,100
Selectivity, H ₂ /X		
H_2/N_2	70	80 to >180
H ₂ /CO	70	70 to >130
H_2/CO_2	35	35 to >65
H_2/H_2S	N/A ²	100 to 150 ²
H_2/H_2O	1.5	1.5 to 3

Notes:

- 1. Target performance is that required to achieve 90% CO_2 capture at 95% purity with 95% fuel utilization (H₂ + CO to the turbine).
- 2. At this selectivity, approximately 200 ppm H_2S in the fuel to turbine.

CMS 86-Tube Bundle Characterization

CMS Bundle ID	He Permeance [GPU]	He/N ₂ Selectivity [-]
86-6	731	100
86-7	1,020	187
86-8	658	91
86-9	950	102
86-10	365	200
86-11	584	142
86-12	548	77
86-13	840	126
86-14	1,020	117
86-J1	973	120
86-MB1	421	122
86-MB2	665	87
86-MB3	438	85

PROGRESS: Pd-Alloy Membranes

Typical Performance and Performance Targets from Economic Analysis

Pd-Alloy Single Tube Characterization Overview

Pd-Alloy Membrane Characteristic	Preliminary Target to Achieve DOE Goals ¹	Laboratory Single Tubes Performance
Permeance, H ₂ [GPU] @ 350°C, 20 psig	3,470	1,750 to >5,500
Selectivity, H ₂ /X		
H_2/N_2	300	300 to >3,000
H ₂ /CO	300	300 to >3,000
H_2/CO_2	300	300 to >3,000
H_2/H_2S	N/A ²	NA ²
H_2/H_2O	300	300 to >3,000

Notes:

- 1. Target performance is that required to achieve 90% CO_2 capture at 95% purity with 95% fuel utilization (H₂ + CO to the turbine).
- 2. Feed gas to the Pd-alloy membrane has been pretreated to remove residual sulfur species in the CGCU.

Pd/PdAg 12-Tube Bundle Characterization

Bundle ID	H ₂ Permeance [GPU]	H_2/N_2
Pd-DCT-3	4,170	1,100
Pd-DCT-7	3,620	1,810
Pd-DCT-12	3,100	1,160
PdAg-DCT-27	4,750	2,260
PdAg-DCT-28	5,180	2,030

PROGRESS: CMS Membrane Stability

Key Technical Hurdles Focused on Long Term Stability (CMS Membrane)

CMS 86 -Tube Bundle Long Term Stability (>16,000 hrs)

PROGRESS: Pd Membrane Stability

Key Technical Hurdles Focused on Long Term Stability (Pd-alloy)

Pd-Alloy Pd-Ag (80/20) Long Term Stability (>35,000 hours)

Run Time [hours]

PROGRESS: CMS Membrane Bundle Stability

NCCC Testing: CMS Membranes Highly Stable in Coal Gasifier Syngas

Testing Parameters

<u>Membrane</u> 86-tube CMS

Operating Conditions T~ 250 to 300°C P~ 150 to 300 psig

<u>Pretreatment</u> Particulate trap only, no other gas cleanup.

 $\frac{Composition}{H_2 \sim 10 \text{ to } 30\%}$ CO ~ 10%
CO₂ ~10%
N₂,H₂O ~Balance

<u>Trace Contaminants</u> $NH_3 \sim 1,000ppm$ Sulfur Species ~ 1,000ppm HCl, HCN,Naphthalenes/Tars, etc.

NCCC Slip Stream Testing: No gasifier off-gas pretreatment

Performance stability of multiple tube CMS membrane bundles during H_2 recovery from NCCC slip stream testing. He and N_2 Permeances measured periodically during >400 hr test.

Pd-alloy Membrane for Residual H₂ **Recovery**

<u>"2nd Stage" of the Dual Stage Membrane Process</u> <u>Clean</u> CO₂ Stream before Sequestration (minimal contaminants)

Pd and Pd-alloy Bundles for Residual H₂ Recovery

Preliminary Membrane Performance

DCT-Style 12-tube Pd and Pd-Ag Membrane Bundles

Preliminary Characterization Data				
Membrane ID	Permeance [GPU]		II /NI	
	N ₂	H_2	H_2/N_2	
Pd-DCT-3	3.8	4,170	1,100	
Pd-DCT-7	2.0	3,620	1,810	
PdAg-DCT-28	2.5	5,180	2,030	

Multiple Tube Pd-alloy Bundles for Residual H₂ Recovery

Preliminary Bundle Performance (pre-NCCC)

Intermediate term stability testing at 350°C

NCCC Testing: In-situ Membrane Bundle Performance

Testing Parameters

<u>Membrane</u> 12-tube Pd and Pd/Ag

Operating Conditions T~ 250 to 300°C P~ 180 psig

> <u>Pretreatment</u> Sulfur removed Sweet Shifted

 $\frac{Feed \ Composition}{H_2 \sim 13\% \ (spikes to ~30\%)}$ $CO \sim 1\%$ $CO_2 \sim 15\%$ $N_2, H_2O \sim Balance$

Trace ContaminantsSulfur Species ~ 0ppm $NH_3 ~ 1,000ppm$ HCl, HCN,Naphthalenes/Tars, etc.

Slip Stream Testing with Sweet Shifted Gasifier Off-gas

Multiple Tube Pd-alloy Bundles for Residual H₂ Recovery

Summary of In-situ (NCCC) and Ex-situ Performance and Regeneration

Membrane ID	Permeance [GPU]		
	H ₂	N ₂	H_2/N_2
Pd-DCT-7 (pre-NCCC)	3,620	2.0	1,810
Pd-DCT-7 (in-situ NCCC)	<300		<50
Pd-DCT-7 (pure gas, periodic during NCCC test)	400 to 500	<2.0	<250
Pd-DCT-7-2 (lab, <u>single tube</u> , post-NCCC)	860	2.5	340
Pd-DCT-7-2 (lab, single tube, regenerated)	3,850	2.7	1,425

Summary

- 1. Performance decay is due to H_2 permeance reduction.
- 2. Fouling is reversible with regeneration.
- 3. No membrane damage.

Membrane Regeneration with No Damage Post NCCC

Removed and regenerated single tubes from NCCC tested bundles Regeneration via air calcination

PROGRESS: NCCC Challenge Testing

Source of In-situ Performance Degradation: Tar-like Species?

CMS Membrane Experience: Fouling below about 250°C with untreated NCCC off-gas

Typical CMS Membrane Operating Temperatures ~270°C → No membrane fouling

<u>Temperatures ≤250°C</u> Tar or other residue buildup evident <u>Temperatures >250°C</u> No evidence of tar or other residue buildup

PROGRESS: NCCC Challenge Testing

Source of NCCC In-situ Performance Degradation: Tar-like Species?

H₂ Permeance in the Presence of Naphthalene as a "Tar" Simulant

<u>Results</u>

- 1. Fouling occurs rapidly at very low "tar" concentrations
- 2. Fouling is independent of "tar" concentration
- 3. Fouling is highly dependent upon operating temperature.
- 4. At 350°C, membrane permeance recovers with removal of "tar".
- 5. At 275°C, membrane regeneration is required.

PROGRESS: NCCC Challenge Testing

Recap of Pd and Pd-alloy Membrane Testing at the NCCC

Features of Pd/Pd-alloy Membranes

- 1. <u>Stable performance</u>... Pd/Pd-alloy membrane performance is stable in sulfurfree and "tar"-free gas.
- <u>Robust</u>... >155 hours of NCCC testing experience shows Pd and Pd-alloy membranes to be very robust in no sulfur environment; no permanent membrane damage due to tar exposure.
- 3. <u>Fouling will occur in the presence of tar-like species</u>... However, our process has the Pd-alloy downstream of the Cold Gas Cleanup. No tar or other contaminants expected.
- 4. <u>Regenerable</u>... Pd/Pd-alloy membranes can be regenerated with no damage to the membrane if exposed to "tar"-like species.

Process Flow Diagram

Preliminary Process Performance and Economics

Parameter	Case B5B*	Case MPT	Target	MPT vs B5B
Carbon Capture	90.0%	90.7%	90%	
CO ₂ Purity	99.48%	93.4%	95%	
H ₂ in Fuel	99.98%	98.7%	NA	
Net Power Production, MW	543	553	N/A	+1.8%
Cost of CO ₂ Captured [\$/tonne]	63.1	62.0	N/A	-1.7%
Cost of CO ₂ Avoided [\$/tonne]	91.6	87.8	N/A	-4.1%
COE no T&S [\$/MWh]	135.4	134.0	N/A	-1.1%
Total as-spent Cost [\$/kW]	4,782	4,639	N/A	-3.0%

* Cost and Performance Baseline for Fossil Energy Plants. Volume 1b. Revision 2b, July 2015. DOE/NETL02015/1727

Preliminary Sensitivity Analysis – Basic Concepts

Objective	Problem	Impact
Carbon Loss <10%	CMS permeates CO and CO ₂	Miss Sequestration Target
Minimize Parasitic Loss: H ₂ Fuel Compression	H_2 needs compressed (460psig) to the CT	Increased COE; Plant Size
Minimize Parasitic Loss: Steam Lost to Permeate	CMS permeates water Need makeup steam to WGS = Power loss at the ST	Increased COE; Plant Size

Preliminary Sensitivity Analysis - Summary

Variable	Impact	Limits
Optimize CMS Permeate	+5 MWe	No membrane technology limits.
Pressure		- H ₂ recovery limited by carbon losses.
		No membrane technology limits.
Increase CMS H ₂ /CO ₂ (from 30 to 50)	+6 MWe	Steam loss increase with H ₂ recovery in CMS membranes.
		Modest membrane technology limit.
Increase CMS H_2/H_2O (from 3 to 6)	+15 MWe	Slight improvement in CMS membrane selectivity required.
Permeate Sweep CMS#1	+15MWe	
or		Dual ended bundle required
Permeate Sweep Pd-alloy	+18 MWe	

Final Remaining Tasks

- Complete Sensitivity Analyses on the Process Design and Economics (also, Introduction of RTI warm gas cleanup for H₂S removal)
- **Finalize TEA Based Upon Sensitivity Analysis**
- > Complete the Environmental, Health, and Safety Evaluation

Summary and Conclusions

Project Successes

- <u>Meet the CCS Targets.</u> Synergy of the proposed Dual Stage Membrane (CMS and Pd-alloy) process meets or exceeds the performance targets required to deliver the DOE CCS goals.
- <u>Long Term Membrane Stability</u>. The CMS (250°C) and Pd-alloy (350°C) membrane tubes and bundles (full ceramic) have been demonstrated to be stable in thousands of hours of thermal stability testing.
- <u>CMS Membrane Highly Stable in Gasifier Off-gas at the NCCC.</u> The CMS membrane bundle has been shown to be stable in various tests for hundreds of hours of exposure to synthetic and actual coal gasifier syngas with only particulate pretreatment.
- <u>Pd/Pd-alloy Membrane Undamaged at NCCC</u>. The Pd/Pd-alloy membrane is not damaged at the NCCC in sulfur free off-gas. Fouling occurs on exposure to "tar" like species which will not be present in the proposed process downstream of the Cold Gas Cleanup Unit.
- <u>Extreme pressures.</u> >1,000psig can be achieved with our DCT-style bundles making them suitable for the proposed IGCC with CO_2 capture environment.
- <u>Power Production Increased.</u> Base Case net power production for the process is 553MWe, 1.8% above the NETL base case. Optimization can boost this by +6 to +18 MWe (+2.9 to 5.2%).
- <u>Capital Cost Reduced</u>. Base Case total capital cost for the process is \$32MM (3%) below the NETL base case.

END