Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO₂) Capture

Federal Award No. DE-FE0026465 - David Lang Joan F. Brennecke Thomas F. Degnan, Jr. Mark J. McCready Mark A. Stadtherr Dept. of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame, IN 46556 USA

> August 24, 2017 Project Initiation: 10/1/15

Partner: Joshuah K. Stolaroff Lawrence Livermore National Laboratory

Ionic Liquids

- Pure salts that are liquid around ambient temperature
 - Not simple salts like alkali salts
- Many favorable properties
 - Nonvolatile
 - Anhydrous
 - High thermal stability
 - Huge chemical diversity Examples of cations

Examples of anions

AHA – aprotic heterocyclic anions

- Retain amine in ring structure

- Further reduce free hydrogens to reduce hydrogen bonding

Eliminate Viscosity Increase by Using AHA – aprotic heterocyclic anions

Gurkan et al., JPC Lett, 2010

Phase Change Ionic Material

70 °C

Pure material; T_m=166 °C; no CO₂

60 mbar CO₂

100 mbar CO₂

150 mbar CO₂

Microencapsulation

- Idea
 - Improve mass transfer by increasing gas-solid (liquid) contact AREA
 - Decrease column size
 - Decrease capital costs

Random and structured packing

Vericelli et al., 2014

Selection of ILs and PCILs

- Chose one IL and one PCIL
 - NDIL0230
 - NDIL0309
- Criteria
 - Melting point
 - Thermal stability
 - Enthalpy of reaction with CO₂ between -45 and -60 kJ/mol
 - Viscosity
 - $-T_m^{complex} < T_m^{pure}$ for PCIL

Microencapsulation

3-[Tris(trimethylsiloxy)silyl]propyl methacrylate Trimethylolpropane trimethacrylate Scheme 1: Formulation of SiTRIS shell material

- LLNL produced encapsulated IL
- Reported last year
- Unfortunately, shell material deactivated the IL

Me

NDIL0230 encapsulated in SiTRIS

Microencapsulation

- LLNL developed and refined ThioleneQ shell material formulation
- Chemical compatibility with NDIL0230 and NDIL0309 established
- Alternative crosslinker identified for improved NDIL0230 production and in-air production

Thermodynamic testing (of encapsulated PCIL)

- Excellent agreement in CO₂ capacity and no degradation

Thermodynamic testing (of encapsulated PCIL)

Recyclability of CO₂ in NDIL0309 in ThioleneQ at 80°C

- Excellent recyclability

Thermodynamic testing (of encapsulated IL)

Effect of Impurities

- Both NDIL0230 and NDIL0309 react irreversibly with SO_2 and NO_{x}
- Both free IL/PCIL and encapsulated
- CO₂ capture with IL or PCIL would need to be after the FGD and NO_x reduction units

Effect of Impurities - Water

Possibility of reprotonation and bicarbonate formation

Wet CO₂ uptake:

Eliminated from consideration ILs that reprotonated just in presence of water

Adapted from Thompson et al., RSC Adv., 2014, 4, 12748

Effect of Impurities - Water

NDIL0230 +H₂O+CO₂ recyclability test

Reaction of water with IL/PCIL in the presence of CO_2 is completely reversible and recyclable!

Do not need to exclude water from the core of the microcapsules

NDIL0309 +H₂O+CO₂

Effect of Impurities - Water

Also true for encapsulated PCIL

Encapsulated NDIL0309+H₂O+CO₂

Reaction of water with PCIL in the presence of CO_2 in capsules is completely reversible and recyclable!

Do not need to exclude water from the core of the microcapsules

Laboratory Scale Unit

- Design, construction and shake-down
- Absorption and stripping
- Located in walk-in hood
- Interchangeable columns
- 1, 3, 6 cm diameter thus far

Laboratory Scale Unit

 Video of capsules in 6 cm column, V = 12 cm/s

11.1d:Pressure transducers: Pressure fluctuations give insight into fluid mechanics of gas-solid flow

Figure 42: Pressure fluctuations during a fluidization tes

LSU – Mass Transfer Measurements

Figure 14: Volume fraction of CO_2 absorbed vs. time (sec) for Thiolene-Q capsules filled with NDIL0309.

LSU – Mass Transfer Measurements

Total Flow Rate (liters/ min.)	Composition (vol % CO ₂)	P _{co2} (bar)	Temp (C)	Absorption Time (s)	Regen- eration Amount (L CO ₂)	(mol CO ₂)	Regen Temp (C)	mol ratio	k (cm/s)
3.3	45.67	0.547	71	1236	0.229	0.0096	114	0.65	1.5E -05
3.3	44.55	0.537	73	433	0.224	0.0094	106	0.64	2.2E -04
3.3	45.93	0.561	78	733	0.23	0.0096	109	0.66	3.1E -05
3.3	44.74	0.533	69	673.5	0.228	0.0095	108	0.65	8.8E -05
3.3	45.22	0.542	71	356	0.243	0.0101	114	0.69	1.0E -04

Recyclability (5 cycles) shows consistent CO_2 capacity of 0.66 +/- 0.02 moles CO_2 /mol PCIL

Rate Based Model

- Developed rate-based model of absorber and stripper
- Used mass transfer data from Laboratory Scale Unit to evaluate model performance
- Incorporated multi-objective optimization and sensitivity analysis capabilities into rate-based model
 - Understand sensitivity
 - Predict best operating conditions

Rate Based Model

• Comparison of measured vs. predicted mass transfer flux in a fluidized bed of microcapsules containing NDIL0309

Measured mass transfer flux	Predicted mass transfer flux	True prediction (no adjusted parameters) Excellent agreement		
(mol/(m²·s))	(mol/(m²·s))			
4.84×10^{-4}	3.33×10^{-4}	Confidence in model		

 Absorption temperature = 70 °C; Capsule diameter = 560 μm; Exposure time = 100 s

Rate Based Model

• Sensitivity Analysis Example – Stripper Temperature

• A "Pareto curve"

Summary

- Successful encapsulation of ILs and PCILs
- Reaction with water in presence of CO₂ completely reversible so no need to exclude water from capsules
- Successful fluidization and absorption/ desorption cycling of encapsulated NDIL0309 in LSU
- Rate-based model predictions of mass transfer flux close match to experimental values

Future Work

- Scale-up and production of kg quantities of encapsulated IL and PCIL
- Testing of kg quantities in laboratory scale unit
- Investigation of effect (if any) of reaction
 with water on process energy consumption
- Process modeling and economics (not full techno-economic analysis)

Acknowledgments

- David Lang
- DOE Federal Award No. DE-FE0026465

