COMBINED SORBENT/WGS-BASED CO$_2$ CAPTURE PROCESS WITH INTEGRATED HEAT MANAGEMENT FOR IGCC SYSTEMS

Cooperative agreement # DE-FE0026388

2017 NETL CO2 Capture Technology Project Review Meeting August 21 – August 25, 2017

Andrew Lucero, Shen Zhao, and Santosh Gangwal

DOE FPM: Isaac “Andy” Aurelio
OUTLINE

• Project Overview
• Technology Background
• Technical Approach/ Project Scope
• Progress and Current Status
• Summary and Future Plans
Project Overview

Project Objective: Conduct laboratory-scale research to develop a combined magnesium oxide (MgO)-based CO$_2$ sorbent/water gas shift (WGS) reactor for precombustion CO$_2$ capture that offers high levels of durability, flexibility, and heat management ability.

Project Goal: The ultimate goal is to develop a process to capture 90% of the CO$_2$ for integrated gasification combined cycle (IGCC) applications and reduce the cost of electricity by 30% over IGCC plants employing conventional methods of CO$_2$ capture.
Project Participants and Funding

- **Sponsors and Funding:**
 - DOE/NETL $1,962K
 - Southern Research $491K

- **Project Duration:** 36 months, Oct. 1, 2015 - Sept. 30, 2018

- **Participants and Roles:**
 - **Southern Research:** Overall project management, lab-scale reactor system design and commissioning, CO₂ sorbent preparation and testing with simulated coal-derived syngas, WGS catalyst performance verification, hybrid sorbent/WGS reactor testing, and process/technical modeling and evaluation
 - **IntraMicron:** Laboratory scale heat exchange reactor loading
 - **Nexant:** Economic evaluation support
Technology Background

Major Operations for Commercial IGCC with CO$_2$ Capture

• Gasification
• Particulate Removal
• Contaminant Removal (Tar, NH$_3$, S)
• Water-gas Shift
• CO$_2$ Capture
• Power Generation

Process Intensification to combine
WGS and CO$_2$ capture
Adsorption 600 psig, 350°C
Regeneration 15 psig, 390°C
Feed based on simulated TRIG
or simulated GE gasifier syngas
Technical Advantages

• Combine CO$_2$ capture and WGS into one vessel
• CO$_2$ capture drives equilibrium limited WGS toward CO$_2$ and H$_2$
• Integrated heat management maintains thermodynamically favorable reaction temperatures for both exothermic CO$_2$ capture/WGS and endothermic regeneration
Technical and Economic Challenges

• High levels of CO and CO$_2$ in syngas
• Effect of contaminants in coal syngas
• Heat management
 – Exothermic CO$_2$ capture
 – Endothermic regeneration
• Process integration with IGCC
• Sorbent capacity, kinetics, and durability
• Large scale sorbent manufacture
Process Chemistry*

MgO (s) + CO₂ (g) ↔ MgCO₃ (s); ΔH = -100.7 KJ/mol

MgO (s) + H₂O (g) ↔ Mg(OH)₂ (s); ΔH = -81.1 KJ/mol

Mg(OH)₂ (s) + CO₂ (g) ↔ MgCO₃ (s) + H₂O (g); ΔH = -19.5 KJ/mol

CO (g) + H₂O (g) ↔ CO₂ (g) + H₂ (g) ; ΔH = -41.2 KJ/mol

*298K
IntraMicron’s Microfibrous Entrapped Catalysts (MFEC)

Cu-entrapped Catalyst Particles

MFEC Allows
- Use of simpler fixed beds
- Large diameters up to 2-6 inches
- Very high activity catalyst particles
- Isothermal operation

Resulting in
- High productivity and selectivity
- Shorter and fewer tubes
- Reduced cost

Images from http://www.intramicron.com
Comparison of Thermodynamic Predictions from Two Sources

Aspen™

Barin and Knacke
Technical Approach/Work Plan and Overall Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Project Management and Planning</td>
<td>10/1/2015 – 9/30/2018</td>
</tr>
<tr>
<td>2.0</td>
<td>Simulated Syngas Sorbent and WGS Tests (BP1 – 12 months)</td>
<td>10/1/2015 – 9/30/2016</td>
</tr>
<tr>
<td>2.1</td>
<td>Lab Skid Design and Fabrication</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Sorbent Parametric Experiments</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Commercial Catalyst WGS Experiments</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Initial Process Modeling</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Reactor Design and Fabrication</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>CO₂ Capture/WGS Parametric Tests</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Detailed Reactor Modeling</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>Extended Tests: CO₂ Capture/WGS Catalyst Durability for 1000 Cycles</td>
<td>4/1/2018 – 9/30/2018</td>
</tr>
<tr>
<td>5.0</td>
<td>Initial Technical and Economic Feasibility Study (BP3 – 6 months)</td>
<td>4/1/2018 – 9/30/2018</td>
</tr>
</tbody>
</table>
Major Milestones and Success Criteria

- **BP1: Simulated Syngas Sorbent and WGS Tests**
 - Sorbent capacity of 1.5 mmol/g for at least 1 sorbent with less than 0.5% degradation for 100 cycles
 - Go/No-Go: 90% CO₂ capture, 97% approach to equilibrium conversion of CO to CO₂, potential for 30% reduction in cost of electricity

- **BP2: Combined CO₂ Capture/WGS Catalyst Testing with Integrated Heat Management**
 - One sorbent achieves 2.0 mmol/g in combined CO₂ capture/WGS reactor
 - 90% Removal of CO+CO₂ in combined CO₂ capture/WGS reactor over 100 cycles
 - Go/No-Go: 90% CO₂ capture, 97% conversion of CO to CO₂, potential for 30% reduction in cost of electricity

- **BP3: Extended Tests Sorbent/Catalyst Durability for 1000 Cycles**
 - < 0.5% loss in sorbent capacity over 500 cycles and > 97 conversion of CO to CO₂ over 1000 cycles in combined CO₂ capture/WGS reactor
 - Initial TEA to confirm potential to meet cost targets
Project Risks and Mitigation Strategies

<table>
<thead>
<tr>
<th>Description of Risk</th>
<th>Probability</th>
<th>Impact</th>
<th>Response/Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO$_2$ sorbent does not have desired capacity.</td>
<td>N/A</td>
<td>N/A</td>
<td>Sorbents identified and demonstrated with required capacity and durability over 100+ cycles</td>
</tr>
<tr>
<td>WGS does not have required performance at sorbent conditions.</td>
<td>Very low</td>
<td>Med</td>
<td>Commercial WGS catalyst designed for optimum performance at conditions being used for sorbent available to optimize performance at necessary conditions.</td>
</tr>
<tr>
<td>Integrated sorber/WGS reactor does not manage heat generation (BP2)</td>
<td>Low</td>
<td>Med</td>
<td>Previous successful experience with proposed heat exchange reactor for highly exothermic reactions</td>
</tr>
<tr>
<td>Results do not predict the achievement of the expected economic target (BP2)</td>
<td>Low-Med</td>
<td>Med</td>
<td>Preliminary technical and economic feasibility study updated as experimental data is generated. Milestone and Go-No-Go decision points limit risk to DOE</td>
</tr>
</tbody>
</table>
Progress and Current Status

- Revisited recent MgO sorbent literature
- 14 sorbents prepared and screened by TGA
- Prepared SR-1.3 sorbent (promoted MgO) in powder and pellet form
- Selected formula from US 2013/0195742 for comparison
- Design, procurement, construction for lab-scale CO₂ capture reactor complete
 - Design based on anticipated cycle conditions
 - Sufficient flexibility in design to cover a range of pressure, temperature, space velocity, syngas composition, and regeneration procedure
Pellets made of SR-1.3 stable for over 150 cycles
CO₂ Capture Reactor Design

- Pressure Swing Adsorption System (0-600 psig)
- Precise Temperature/Pressure Control
- Sorbent Regeneration via Pressure Swing/Vacuum
- Automated Adsorption/Desorption Cycle
- Reverse Gas flow During Desorption

Space Velocity: 250-5000 hr⁻¹
Temperature: 250-350°C
Pressure: 0-600 psig
Laboratory Scale CO$_2$ Capture Skid
Major Syngas Components*

<table>
<thead>
<tr>
<th></th>
<th>GE (Oxygen Blown)</th>
<th>TRIG (Air Blown)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>34.2%</td>
<td>11.7%</td>
</tr>
<tr>
<td>CO</td>
<td>35.8%</td>
<td>17.5%</td>
</tr>
<tr>
<td>CO₂</td>
<td>13.7%</td>
<td>8.5%</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.12%</td>
<td>2.6%</td>
</tr>
<tr>
<td>N₂</td>
<td>0.8%</td>
<td>50.5%</td>
</tr>
</tbody>
</table>

* H₂O (steam) as necessary for WGS
Combined CO$_2$ Capture/WGS Test without Temp. Swing

- Simulated TRIG Feed
- CO conversion close to 100% before the CO$_2$ breakthrough
- Working capacity similar to the previous separate tests (1.5 mmol/g)
Sorbent Capacity

Working capacity experiments for >100 cycles regenerating with pressure-swing (without temperature swing)

Target: 10% total CO₂ breakthrough (90% capture)
Sorbent Stability

Working capacity at 10% CO₂ breakthrough versus cycle number for syngas feed and downflow regeneration.

Trend was still increasing!
Combined CO$_2$ Capture/WGS Test with Temp. Swing

- Simulated TRIG Feed
- Almost no breakthrough of CO$_2$
- High working capacity (>5.0 mmol/g)
Sorbent Capacity Increase

Sorbent working capacity comparison between with and without temperature swing during the sorbent regeneration

3+ times the capacity with 40 °C temperature swing
Regeneration methods can increase the sorbent capacity but reduce WGS catalyst performance.
Balanced experimental conditions

<table>
<thead>
<tr>
<th>Regen Method</th>
<th>Catalyst CO conversion (%)</th>
<th>Sorbent capacity (mmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>75 (decreasing over cycles)</td>
<td>6.0</td>
</tr>
<tr>
<td>Method 2</td>
<td>87 (stable)</td>
<td>4</td>
</tr>
<tr>
<td>Method 3</td>
<td>90 (stable)</td>
<td>3</td>
</tr>
</tbody>
</table>

Target: 10% total CO₂ breakthrough (90% capture)
SUMMARY

• A novel hybrid CO₂ capture/WGS reactor with integrated heat management has been developed.
• Promising sorbents have exceeded capacity (TGA test: >4 mmol/g, skid test: >5 mmol/g) and durability targets (over 500 cycles with no degradation).
• Commercial WGS catalyst close to performance targets, 87% - 94% of equilibrium CO conversion.
• With current regeneration methods, sorbent performance and WGS catalyst performance need to be balanced.
• Ongoing technoeconomic analysis suggest that a commercial process based on this technology is a potential for reduction in cost of electricity compared to baseline IGCC with traditional CO₂ capture approaches.
Future Testing

• Current project
 – Regeneration methods for integrated CO$_2$ capture/WGS
 – Extended numbers of cycles to show stability
 – Additional technical and economic modeling

• Scale-up and test on coal-derived syngas for technology development after project completion
Acknowledgements

• Funding provided by US Department of Energy National Energy Technology Laboratory and Southern Research under co-operative Agreement # DE-FE0026388

• Isaac “Andy” Aurelio DOE/NETL

• Intramicron: Paul Dimick

• Southern Research E&E Department senior staff, engineers, and chemists
Questions?
Disclaimer

The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this paper. Neither Southern Research Institute nor the United States Department of Energy, nor any person acting on behalf of either: makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Department of Energy.