

Modeling Aerosol Growth in Amine Scrubbing for Carbon Capture

Yue Zhang, University of Texas at Austin

Gary T. Rochelle, University of Texas at Austin

Executive Summary

- Research Objective: understand growth mechanisms and develop strategies to remove aerosols by quantitative and accurate modeling
- Growth mechanisms:
 - $\circ\,$ as part. conc increases, aerosol growth decreases due to amine driving force depletion
 - $\circ\,$ the limiting driving force of aerosol growth is amine
 - $\circ~$ high amine volatility increases growth
- Strategies to remove aerosols:
 - \circ reduce aerosol nuclei below 10⁶ part./cm³
 - $\circ~$ choose solvents with moderate volatility, avoid solvents with low volatility
 - $\circ\,$ expand WW and pre-humidify dry bed

Amine Scrubbing Carbon Capture

Amine Scrubbing Carbon Capture

Amine Scrubbing Carbon Capture

if aerosol is not captured: emissions result in solvent loss & environmental impact

if aerosol grows enough: will be captured. > 3 μ m, captured by impaction

THE UNIVERSITY OF

This work

Los Alamos

- How much aerosol grows
- How we can manage aerosol growth

WestVirginiaUniversity.

PZ Makes Aerosol

• April 2017 UT-SRP pilot plant with 5 m PZ and 52 ppm SO_3

Growth Mechanisms Are NOT Well-understood

- Limiting driving force for growth
- Solvent selection
- Operating conditions
- Effective process configurations

Industrial Configurations for Emissions Control

Configurations demonstrated in field

- Acid Wash by Aker Solutions^{1,2}
- Two-stage Water Wash by Linde-BASF³
- Dry Bed by BASF-Linde-RWE Power^{4,5}

In this study

- Aerosol with a wide range of particle number conc
- Amine with different volatility
- Dry Bed, Intercoolers, Multi-stage Water Wash

J. Knudsen, et al., 2013¹ O. Bade, et al., 2014² T. Stoffregen, et al., 2014³ P. Moser, et al., 2013⁴ P. Moser, et al., 2014⁵

WestVirginiaUniversity

Sequential Aerosol Growth Model

PZ Model by *Fulk*¹, *Kang*², and *Zhang*

- Steady-state absorber and water wash simulations in Aspen Plus, and aerosol calculations in gPROMS
- Proposed gas phase amine driving force depletion

MEA Model by Majeed³

- Steady-state absorber simulations in NTNU in-house simulator, and aerosol calculations in MATLAB
- Also proved gas phase MEA depletion

Fulk, et al., 2016¹ Kang, et al., 2017² Majeed, et al, 2017³

Sequential Aerosol Growth Model

Sequential Aerosol Growth Model

Preliminary Modeling Results

Aerosol Growth at Realistic Plant Conditions

National Carbon Capture Center (NCCC) Absorber

- Nov 2017 NCCC Campaign
- 0.5 MWe Pilot Solvent Test Unit
- 90% removal

Rate-based Absorber Modeling

- Independence Model
 - Developed in Aspen Plus[®] RateSepTM,¹
 - Rigorous e-NRTL thermodynamic framework
 - Rigorous kinetics with reactions in boundary layer
- Solvent
 - 5 m PZ: fast absorption rate, low viscosity, good energy performance

P. Frailie, 2014¹

• Lean Loading at 0.22 (mol CO₂/mol alk)

CCSI² Carbon Capture Simulation for Industry Impact Carbon Capture Simulation for Industry Carbon Capture Simulation for Industry Impact Carbon Capture Simulation for Industry Carbon Capture Simu

Assumptions for Aerosols

- Well-mixed
- Particle conc at 10⁷ part./cm³
 - < 10⁶ : emits < 1ppm amine
 - > 10⁸ : starts coagulation
 - $\sim 10^7$: most often observed at site
- Initial conditions

0.1 μm , 5 m PZ, 0.36 CO_2 loading

General aerosol growth profile

- Aerosols grow from 0.1µm to 4.4 in ABS, and 10 in WW (collectable)
- Aerosol initial diameter is not critical

Component pickup in aerosol

• Aerosols grow in WW by picking up water

High part. conc reduces aerosol growth

PZ driving force depletion in gas phase

20

PZ driving force depletion in gas phase

21

Relative driving force ratio between g-d

$\phi_{gd} = \frac{\Delta P_{gd}}{\Delta P_{ld}}$			• P* ₁
	1 part./cm ³	107	108
Avg $\boldsymbol{\emptyset}_{gd, \mathbf{PZ}}$	100%	72%	32%
Avg $\boldsymbol{\emptyset}_{gd, \text{ water}}$	0%	0%	0%

- The limiting driving force of growth is PZ
- As part. conc increases, limiting driving force (PZ) shifts from g-d to l-g
- Aerosol is always in equilibrium with water in gas

Dry bed needs to be pre-humidified to grow aerosols

Z/Z_{tot}

Increase and decrease PZ volatility by 10x

- Choose solvents with moderate volatility, like PZ (collectable)
- Avoid solvents with low volatility (non-collectable)

Conclusions - growth mechanisms

- As part. conc increases, aerosol growth decreases due to amine driving force depletion. The limiting driving force shifts from g-d to l-g
- In NCCC with 5 m PZ
 - \circ 10⁷ part./cm³ are collectable
 - w/o water wash, 10⁸ part./cm³ are non-collectable
- In water wash, aerosol grows by picking up water
- Higher amine volatility increases growth

Recommendations

• Nuclei

 $\,\circ\,$ Reduce aerosol nuclei below 10⁶ part./cm³

• Solvent selection

 $\circ~$ Choose solvents with moderate volatility, like PZ

 $\circ~$ Avoid solvents with low volatility

- Process configurations
 - o Expand WW
 - \circ Pre-humidify dry bed

Possible Future Work

- Test a wide variety of amines/blends
- Particle size/residence time distribution

For more information

Yue Zhang, Ph.D. Candidate, University of Texas at Austin yuezhang1992@utexas.edu

Gary T. Rochelle, Professor, University of Texas at Austin <u>gtr@che.utexas.edu</u>

