A Microalgae-based Platform for the Beneficial Reuse of CO₂ Emissions from Power Plants

University of Kentucky.

Mark Crocker University of Kentucky mark.crocker@uky.edu

Project Overview (DE-FE0026396)

G Funding:

DOE: \$990,334 Cost share: \$261,110 Total project: \$1,251,444

Performance dates: 10/1/2015 – 9/30/2017

Project Participants:

- University of Kentucky
- University of Delaware
- Algix LLC
- Duke Energy

Project Objectives:

- Optimize UK's technology for microalgae cultivation and processing with respect to cost and performance, particularly with regard to harvesting and dewatering
- Develop strategies to monitor and maintain algae culture health
- Develop a biomass utilization strategy which produces lipids for upgrading to fuels and a proteinaceous feedstock for the production of algal-based bioplastics
- Perform techno-economic analyses to calculate the cost of CO₂ capture and recycle, and life cycle analyses to evaluate the GHG emission reduction potential.

Technology Background: Process Schematic

Advantages and Challenges

- Ability to generate a valuable product, thereby off-setting costs of CO₂ capture (potential for new industry)
- \succ No need to concentrate CO₂ stream
- Potential to polish NOx and SOx emissions
- Areal productivity such that very large algae farms required for significant CO₂ capture
- CO₂ capture efficiency modest for conventional systems (<50%)
- Challenging economics: cost of algae cultivation is high (currently >\$1,000/MT), hence require high value applications for produced algae biomass
- Market size generally inversely related to application value (hence risk of market saturation)

Technical Approach/Project Scope

Year 2:

• Task 5: Engineering Analysis and Testing (UK)

- dewatering system refinement
- life cycle assessment
- techno-economic analysis
- field testing and biomass production
- develop models to assess power plant integration opportunities
- update LCA/TEA with process data
- Task 6: System Biology (UD):
 - alternative carbon supply system testing
 - optimization of abiotic parameters for production of lipids and protein
- Task 7: Biomass Valorization (UK/Algix)
 - profiling and upgrading of extracted lipids
 - biomass fractionation and upgrading
 - bioplastics evaluation
 - heavy metals fate analysis

Key Milestones / Success Criteria

Decision Point	Date	Success Criteria	Status
Lipid extraction	9/30/16	>50 wt% total lipid recovery	>80% lipid
		demonstrated for wet extraction	recovery achieved
Demonstration of continuous	9/30/16	Solids recovery of >95%	>95% solids
dewatering		demonstrated	recovery achieved
Verification of methodology	9/30/17	Maintenance of culture viability for 2	Achieved
for culture maintenance		weeks without flue gas	
Validation of bioplastic properties	9/30/17	Mechanical properties of bioplastics derived from defatted algae better or equal to bioplastics based on whole cell algae	On-going
Lifecycle analysis	9/30/17	Lifecycle analysis shows net positive greenhouse gas emission reduction	Achieved

System Biology:

Effect of Flue Gas Constituents on Algae Growth

Experimental Design:

- Three gas treatments: Air/Control (400 ppm CO₂), 9% CO₂, and simulated flue gas (9% CO₂, 55 ppm NO, 25 ppm SO₂).
- Four replicate cultures for each treatment
- Flow rates were maintained between 2.3-2.5 ml/min for each replicate for all treatments.
- Cultures were acclimated to the gases for two batch cycles before starting experiment (transferred before reaching stationary phase)

Results:

 There was no statistical difference in productivity between simulated flue gas and CO₂-grown cultures.

Productivity and specific growth rates during log phase growth when maintained in urea media

	Treatment		
	Air	CO ₂	Flue Gas
Productivity (g L ⁻¹ Day ⁻¹)	0.018	0.268	0.266
Specific growth (μ)	0.22	0.389	0.307

Engineering Analysis: East Bend Station Data (1100 L PBR) O₂ Production vs. Process Temperature, PAR & pH

- Optimal O₂ production is more temperature dependent than previously thought •
- Highest O₂ production trend occurs at process temperatures and PAR values of 35-38.5 °C and • 1200-2000 µmol/(m²s), respectively 8

Biomass Harvesting:

Optimization of Flocculation Procedure

(Residence Time = 10 Min)

Effect of cationic flocculant dosage and molecular weight on solids capture of harvested algae (0.456 g/L)

• Extent of solids capture is limited if only cationic flocculant is used (regardless of flocculant mol. wt.)

Cationic + anionic flocculant

Effect of anionic flocculant dosage and molecular weight on solids capture of harvested algae pretreated with 5 ppm cationic flocculant

- Anionic flocculants by themselves are not effective
- However, 95% solids capture is possible by addition of 1 ppm of anionic flocculant to algae pre-flocculated with 5 ppm cationic flocculant

Heavy Metals Analysis

Analysis of solids

Analysis of nutrient broth in PBR

- 2015 averages are average of five samples of dry algae grown on flue gas at East Bend Station in 2015
- Weighted Dry Nutrients numbers represent the sum of all metals present in dry nutrients, weighted to reflect the nutrient mixture as it is added to the PBR
- "Metals from Nutrients" represents weighted calculation based on metals in dry nutrients and their respective target concentrations in algae media
- SDWA MCL's represent the Maximum Contaminant Levels (MCL's) for drinking water as regulated by the Safe Drinking Water Act of 1974
- Very low heavy metal concentrations detected in harvested algae levels are consistent with heavy metals incorporation from supplied nutrients

Life Cycle Assessment

Schematic of a section of the algae system consisting of 52 PBR modules, 4 settling tanks (ST), holding tanks (HT), and UV sterilizers (UV).

- A life cycle assessment (LCA) was developed for an algae system based on UK's cyclic flow PBR, mitigating 30% of the CO₂ emitted by a 1 MW coal-fired power plant.
- Operation of the algae system included cumulative process requirements and energy consumption associated with algae cultivation, harvesting, dewatering, nutrient recycling, and water treatment.

Life Cycle Assessment: Results

- CO₂ emission associated with the gas compressor was 8.7 x 10³ metric tons, due to the large amount of flue gas (4422 m³/h) being compressed at full capacity for 12 h per day.
- PBR feed pumps emitted a lesser amount of CO₂ (1.9 x 10³ metric tons) on account of the cyclic flow operation mode.
- The PBR system was able to capture 43% (2.6 x 10⁴ metric tons) of the target CO₂ emission (6.1 x 10⁴ metric tons).
- The LCA results demonstrate that a PBR algae system can be considered as a CO₂ capture technology.

POWER PLANT		
Capacity	1	MW
CO ₂ emission	22.76	ton/day
CO ₂ capture	30	%
CO ₂ emission mitigated	6.83	ton/day
Operation	300	day/year
ALGAE		
Strain	Scened	lesmus acutus
Growth rate	0.15	g/L/day
Culture density at harvest	0.8	g/L (dry weight)
Algae required for 30% CO_2 capture	3.88	ton/day

Techno-economic Analysis

US Scenario (best case):

- 30% CO₂ capture
- Algae productivity = 35 g/m^2 .day
- 300 operating days/yr
- 30 yr amortization
- Cost of capital not included

Techno-economic Analysis (cont.)

- Cost estimates (2017) are consistent with projections from prior analysis (2013), showing considerable progress toward economic viability
- Asymptote relates to operating costs

Algal Biomass Utilization

Lipid Extraction and Characterization

- Wet Scenedesmus, typically ~15 wt% solids
- Ultrasound, microwave irradiation and bead beating all proved ineffective for cell lysing
- Acidification to pH 1-2 using aq. HCI/MeOH results in cell lysing and simultaneous lipid (trans)esterification*
- Yield of esterifiable lipids = 6.3 (+/- 0.1) wt%, close to value reported previously for dry *Scenedesmus***
- Lipids from this strain of *Scenedesmus* acutus are highly unsaturated: ALA (α-linolenic acid) accounts for almost 50% of total lipids

^{*} L.M.L. Laurens, M. Quinn, S. Van Wychen, D.W. Templeton, E.J. Wolfrum, *Anal. Bioanal. Chem.*, 403 (2012) 167-178. **E. Santillan-Jimenez, R. Pace, S. Marques, T. Morgan, C. McKelphin, J. Mobley, M. Crocker, *Fuel* 180 (2016) 668-678.

Upgrading of Extracted Algal FAMES to Hydrocarbons

75 wt% algal FAMEs in dodecane, WHSV = 1 h⁻¹, Temp. = 375 °C

- >90% liquid products are diesel-like hydrocarbons at all reaction times
- Methane yield decreases after induction period, indicating poisoning of cracking sites

E. Santillan-Jimenez, R. Loe, M. Garrett, T. Morgan, M. Crocker, *Catal. Today*, 2017, http://dx.doi.org/10.1016/j.cattod.2017.03.025.

Composition of Whole and Defatted Algae

Sample	Ash (wt%)	Protein (wt%)	Volatiles (GC/MS)
Whole	11.1	44.2	16 peaks at 140 °C; 196 peaks at 200 °C
Defatted	15.6	50.7	12 peaks at 140 °C; 121 peaks at 200 °C

- Increase in protein and ash content consistent with removal of lipids
- Fewer compounds were released upon heating to 200 °C for the defatted algae, suggesting that lipid extraction may have improved thermal stability
- Defatted algal biomass has improved odor properties
- Defatted algae used for production of maleic anhydride compatibilized EVA (ethylene vinyl acetate) composite, containing 30 wt% algae

EVA composite test parts

Summary

- An improved protocol for algae harvesting was developed, based on the use of cationic + anionic flocculants
- Very low heavy metal concentrations detected in harvested algae levels are consistent with heavy metals incorporation from supplied nutrients
- LCA showed that the cyclic flow PBR qualifies as a net CO₂ capture technology
- TEA indicates a best case scenario production cost of \$875/ton for *Scenedesmus acutus* biomass
- A procedure was developed for lipid extraction from wet *Scenedesmus* biomass
- Extracted lipids were upgraded to diesel-range hydrocarbons
- Defatted biomass possessed improved odor properties for bioplastic applications

Acknowledgements

- Department of Energy / National Energy Technology Laboratory: Andy Aurelio
- University of Kentucky: Michael Wilson, Dr. Jack Groppo, Aubrey Shea, Stephanie Kesner, Daniel Mohler, Robert Pace, Dr. Eduardo Santillan-Jimenez, Tonya Morgan, Dr. Czarena Crofcheck
- University of Delaware: Dr. Jennifer Stewart, Jenna Schambach, Dr. Mark Warner
- Algix: Dr. Ashton Zeller, Ryan Hunt
- Duke Energy: Doug Durst

